DOI QR코드

DOI QR Code

IN718 초내열 합금의 고속 적층 제조 속도 확보를 위한 최적 VED 활용 공정 변수 제어 방안 연구

Study for the Process Parameter Control to Achieve High Build Rate of Laser Powder Bed Fused IN718 Super Alloy Using Optimal VED

  • Kim, Sang Uk (Department of Materials Science and Engineering, University of Central Florida) ;
  • Kim, Kyu-Sik (Agency for Defense Development) ;
  • Sohn, Yongho (Department of Materials Science and Engineering, University of Central Florida) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • 투고 : 2022.10.04
  • 심사 : 2022.10.24
  • 발행 : 2022.10.28

초록

Recently, considerable attention has been given to nickel-based superalloys used in additive manufacturing. However, additive manufacturing is limited by a slow build rate in obtaining optimal densities. In this study, optimal volumetric energy density (VED) was calculated using optimal process parameters of IN718 provided by additive manufacturing of laser powder-bed fusion. The laser power and scan speed were controlled using the same ratio to maintain the optimal VED and achieve a fast build rate. Cube samples were manufactured using seven process parameters, including an optimal process parameter. Analysis was conducted based on changes in density and melt-pool morphology. At a low laser power and scan speed, the energy applied to the powder bed was proportional to ${\frac{P}{\sqrt{V}}}$ and not ${\frac{P}{V}}$. At a high laser power and scan speed, a curved track was formed due to Plateau-Rayleigh instability. However, a wide melt-pool shape and continuous track were formed, which did not significantly affect the density. We were able to verify the validity of the VED formula and succeeded in achieving a 75% higher build rate than that of the optimal parameter, with a slight decrease in density and hardness.

키워드

과제정보

본 연구는 산업통상자원부 및 한국산업기술진흥원의 혁신성장 글로벌인재양성사업의 수행결과임(P0017303, 스마트 제조 글로벌인재양성사업).

참고문헌

  1. T. DebRoy, T. Mukherjee, J. O. Milewski, J. W. Elmer, B. Ribic, J. J. Blecher and W. Zhang: Nat. Mater., 18 (2019) 1026. https://doi.org/10.1038/s41563-019-0408-2
  2. M. Balbaa, S. Mekhiel, M. Elbestawi and J. McIsaac: Mat. Des., 193 (2020) 108818.
  3. D. H. Kim, K. B. Park, Y. T. Cho and Y. G. Jung: J. Korean Soc. Precis. Eng., 34 (2017) 161. https://doi.org/10.7736/KSPE.2017.34.3.161
  4. T. Huynh, A. Mehta, K. Graydon, J. M. Woo, S. Park, H. Hyer, L. Zhou, D. D. Imholte, N. E. Woolstenhulme, D. M. Wachs and Y. H. Sohn: Metallogr. Microstruct. Anal., 11 (2022) 88. https://doi.org/10.1007/s13632-021-00811-0
  5. H. Chen, T. Cheng, Z. Li, Q. Wei and W. Yana: Acta Mater., 231 (2022) 117901. https://doi.org/10.1016/j.actamat.2022.117901
  6. J. S. J. Ten, F. L. Ng, H. L. Seet and M. L. S. Nai: J. Laser Appl., 34 (2022) 012016. https://doi.org/10.2351/7.0000240
  7. M. C. Sow, T. D. Terris, O. Castelnau, Z. Hamouche, F. Coste, R. Fabbro and P. Peyre: Addit. Manuf., 36 (2020) 1.
  8. K. G. Prashanth, S. Scudino, T. Maity, J. Das and J. Eckert: Mater. Res. Lett., 5 (2017) 386. https://doi.org/10.1080/21663831.2017.1299808
  9. L. C. Ardila, F. Garciandia, J. B. Gonzales-Diaz, A. Echeverria, M. M Petite, R. Deffley and J. Ochoa: Phys. Procedia, 56 (2014) 99.
  10. M. Tang, P. C. Pistorius and J. Beuth: Addit. Manuf., 14 (2017) 39.
  11. U. S. Bertoli, A. J. Wolfer, M. J. Matthews, J. R. Delplanque and J. M. Schoenung: Mater. Des., 113 (2017) 331. https://doi.org/10.1016/j.matdes.2016.10.037
  12. P. Ferro, R. Meneghello, G. Savio and F. Berto: Int. J. Adv. Manuf. Technol., 110 (2020) 1911. https://doi.org/10.1007/s00170-020-05949-9
  13. N. Nudelis and P. Mayr: Metals, 11 (2020) 1912. https://doi.org/10.3390/met11121912
  14. K. P. Lee, K. M. Kim, S. H. Kang, J. H. Han and K. H. Jung: J. Korean Cryst. Growth Cryst. Technol., 28 (2018) 217.
  15. Y. F. Shen, D. D. Gu and Y. F. Pan: Key Eng. Mater., 315 (2006) 357.
  16. I. Yadroitsev, A. Gusarov, I. Yadroitsava and I. Smurov: J. Mater. Process. Technol., 210 (2010) 1624. https://doi.org/10.1016/j.jmatprotec.2010.05.010
  17. U. Gratzke, P. D. Kapadia, J. Dowden, J. Kroos and G. Simon: J. Phys. D, 25 (1992) 1640. https://doi.org/10.1088/0022-3727/25/11/012
  18. R. Zhang, L. Qi, J. Luo and H. Lian: J. Phys. D, 53 (2020) 9.
  19. J. M. Woo, J. Y. Kim, Y. H. Sohn and K. A. Lee: J. Korean Inst. Met. Mater., 28 (2021) 410.
  20. A. Dass and A. Moridi: Coatings, 9 (2019) 418.
  21. T. N. Le and Y. L. Lo: Mater. Des., 179 (2019) 107866. https://doi.org/10.1016/j.matdes.2019.107866
  22. J. Svensson, N. M. Bulgakova, O. A. Nerushev and E. E. B. Campbell: Phys. Rev., 73 (2006) 205413. https://doi.org/10.1103/PhysRevB.73.205413