Acknowledgement
This work was financially supported by the National Natural Science Foundation of China (No. 12061043, 11661054).
References
- J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334. https://doi.org/10.2307/2324899
- Z. Chen and X. Dai, Chaotic dynamics of minimal center of attraction of discrete amenable group actions, J. Math. Anal. Appl. 456 (2017), no. 2, 1397-1414. https://doi.org/10.1016/j.jmaa.2017.07.053
- Z. Chen, Y. Huang, and X. Liu, Recurrence and the minimal center of attraction with respect to a Folner sequence, Topology Appl. 275 (2020), 107156, 17 pp. https://doi.org/10.1016/j.topol.2020.107156
- X. Dai, Chaotic dynamics of continuous-time topological semi-flows on Polish spaces, J. Differential Equations 258 (2015), no. 8, 2794-2805. https://doi.org/10.1016/j.jde.2014.12.027
- M. Einsiedler and T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011. https://doi.org/10.1007/978-0-85729-021-2
- H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.
- K. Gerhard, Equilibrium States in Ergodic Theory, Elementary examples of equilibrium states. Cambridge University Press, 1998.
- E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), no. 6, 1067-1075. http://stacks.iop.org/0951-7715/6/1067 1067
- N. Hindman and D. Strauss, Density in arbitrary semigroups, Semigroup Forum 73 (2006), no. 2, 273-300. https://doi.org/10.1007/s00233-006-0622-5
- Y. Huang and Z. Zhou, Two new recurrent levels for C0-flows, Acta Appl. Math. 118 (2012), 125-145. https://doi.org/10.1007/s10440-012-9681-7
- B. Ling, X. Nie, and J. Yin, Weakly almost periodic points and chaotic dynamics of discrete amenable group actions, J. Korean Math. Soc. 56 (2019), no. 1, 39-52. https://doi.org/10.4134/JKMS.j180010
- H. Wang, Z. Chen, and H. Fu, M-systems and scattering systems of semigroup actions, Semigroup Forum 91 (2015), no. 3, 699-717. https://doi.org/10.1007/s00233-015-9736-y
- H. Wang, X. Long, and H. Fu, Sensitivity and chaos of semigroup actions, Semigroup Forum 84 (2012), no. 1, 81-90. https://doi.org/10.1007/s00233-011-9335-5
- K. Yamamoto, Topological pressure of the set of generic points for ℤd-actions, Kyushu J. Math. 63 (2009), no. 2, 191-208. https://doi.org/10.2206/kyushujm.63.191
- Z. L. Zhou, Weakly almost periodic point and measure centre, Sci. China Ser. A 36 (1993), no. 2, 142-153.
- X. Zhou and E. Chen, Topological pressure of historic set for ℤd-actions, J. Math. Anal. Appl. 389 (2012), no. 1, 394-402. https://doi.org/10.1016/j.jmaa.2011.11.066
- Z. L. Zhou and W. H. He, Level of the orbit's topological structure and topological semiconjugacy, Sci. China Ser. A 38 (1995), no. 8, 897-907.