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TWO NEW RECURRENT LEVELS AND CHAOTIC

DYNAMICS OF Zd
+-ACTIONS

Shaoting Xie and Jiandong Yin

Abstract. In this paper, we introduce the concepts of (quasi-)weakly

almost periodic point and minimal center of attraction for Zd
+-actions,

explore the connections of levels of the topological structure the orbits of
(quasi-)weakly almost periodic points and discuss the relations between

(quasi-)weakly almost periodic point and minimal center of attraction.

Especially, we investigate the chaotic dynamics near or inside the mini-
mal center of attraction of a point in the cases of S-generic setting and

non S-generic setting, respectively. Actually, we show that weakly al-

most periodic points and quasi-weakly almost periodic points have dis-
tinct topological structures of the orbits and we prove that if the minimal

center of attraction of a point is non S-generic, then there exist certain
Li-Yorke chaotic properties inside the involved minimal center of attrac-

tion and sensitivity near the involved minimal center of attraction; if

the minimal center of attraction of a point is S-generic, then there exist
stronger Li-Yorke chaotic (Auslander-Yorke chaotic) dynamics and sensi-

tivity (ℵ0-sensitivity) in the involved minimal center of attraction.

1. Introduction

The central problem of the study of dynamical systems is the asymptotic
behaviors or topological structures of the orbits. As is known that the most
important dynamics are concentrated on a full measure subset from the view of
ergodic theory. Nevertheless, only such orbits of points with certain recurrence
are of importance indeed. In [15], Zhou introduced the notions of weakly almost
periodic point and measure center, and he proved that the measure center is
just the closure of the set of weakly almost periodic points. The notion of
quasi-weakly periodic point was introduced in [17] and it was proved that weakly
almost periodic points and quasi-weakly almost periodic points have completely
distinct ergodic properties, i.e., a point is quasi-weakly almost periodic if and
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only if it belongs to its minimal center of attraction, and the support of each
invariant measure generated by the orbit of a given weakly almost periodic
point is its minimal center of attraction. Since then, the study of weakly almost
periodic points and quasi-weakly almost periodic points has been an extremely
interesting topic of topological dynamical systems and ergodic theory. For
example, in [10], the authors introduced the concepts of weakly almost periodic
point, quasi-weakly periodic point and measure center for continuous semi-flows
and they proved that quasi-weakly almost periodic points possess especially
rich orbit-structure and they presented a necessary and sufficient condition for
a point to belong to its own minimal center of attraction. In [3,11], the authors
introduced the concepts of weakly almost periodic point and minimal center of
attraction for amenable group actions and they obtained some similar results
of [15, 17]. In the paper, we introduce the notions of weakly almost periodic
point, quasi-weakly almost periodic point, measure center and minimal center
of attraction of Zd+-actions and we investigate the chaotic properties near or
inside the minimal center of attraction of a point in the state space for the
cases of S-generic setting and non S-generic setting, respectively. In this paper,
we say that (X, T ) is a Zd+-action which means that X is a compact metric

space with a metric ρ and T = {Th : X → X}h∈Zd
+

is a family of continuous

transformations satisfying: Th+k = Th ◦ T k for all h, k ∈ Zd+, where Zd+ is
a countable commutative additive topological semigroup, d is a positive integer
and Z+ is the set of non-negative integers.

The paper is organized as follows. In Section 2, we recall some necessary
notions. In Section 3, we introduce the notions of weakly almost periodic
point, quasi-weakly almost periodic point, measure center and minimal center
of attraction of Zd+-actions and we show that weakly almost periodic points
and quasi-weakly almost periodic points have distinct topological structures of
the orbits. Finally, we study the chaotic dynamics exhibited near or inside the
minimal center of attraction of a point under the cases of S-generic setting and
non S-generic setting, respectively.

2. Preliminaries

2.1. Basic concepts of countable additive topological semigroup Zd
+

Let (X, T ) be a Zd+-action. For k ∈ Zd+ and Λ ⊂ Zd+, set

Λ + k = k + Λ = {h+ k : h ∈ Λ}.
For n ∈ N, where N denotes the set of positive integers, let

Λn = {h = (h1, . . . , hd) ∈ Zd+ : hi < n for each 1 ≤ i ≤ d}
and

λn = |Λn|,
where |A| denotes the cardinality of the set A.

For more details of Zd+-actions, we refer the readers to see [6, 14].
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For A ⊂ Zd+, the upper density and lower density of A are defined, respec-
tively, by

d(A) = lim sup
n→∞

|A ∩ Λn|
λn

and

d(A) = lim inf
n→∞

|A ∩ Λn|
λn

.

If d(A) = d(A), then we call this value the density of A and denote it by
d(A).

For A,B ⊂ Zd+ and h ∈ Zd+, write

h−1A = {l ∈ Zd+ : l + h ∈ A} and B−1A =
⋃
b∈B

b−1A.

Definition 2.1 ([9]). A subset S of Zd+ is called

(1) thick if for every F ∈ Fin(Zd+), there exists h ∈ Zd+ such that F +h ⊆ S,

where Fin(Zd+) denotes the collection of all finite subsets of Zd+;

(2) syndetic if there exists H ∈ Fin(Zd+) such that

Zd+ =
⋃
t∈H

t−1S, i.e., Zd+ = H−1S;

(3) piecewise syndetic if there exists H ∈ Fin(Zd+) such that for every finite

subset A of Zd+, there is some h ∈ Zd+ satisfying

A+ h ⊆ H−1S.

Remark 2.1. Obviously, S ⊂ Zd+ is syndetic if and only if S intersects every

thick subset of Zd+.

2.2. Basic concepts of Zd
+-actions

Let (X, T ) be a Zd+-action and x ∈ X. The orbit of x under the action of Zd+
is denoted by T x = {Thx : h ∈ Zd+}. A subset Λ of X is called T -invariant if

T Λ ⊂ Λ, i.e., Thx ∈ Λ for each x ∈ Λ and each h ∈ Zd+. Let U, V ⊂ X, define
the hitting time set of U and V by

N(U, V ) = {h ∈ Zd+ : U ∩ T−hV 6= ∅}
and the recurrence time set of x entering U by

N(x, U) = {h ∈ Zd+ : Thx ∈ U}.
A point x ∈ X is called a recurrent point of (X, T ) if for every open neigh-

borhood U of x, N(x, U) is infinite; an almost periodic point of (X, T ) if for
every neighborhood U of x, N(x, U) is syndetic. Denote by R(T ) and A(T )
the sets of recurrent points and almost periodic points of (X, T ), respectively.
A point y ∈ X is called an ω-limit point of x if N(x, U) is infinite for every
neighborhood U of y. The collection of all ω-limit points of x is called the
ω-limit set of x and we denote it by ωT (x). For x ∈ X, the closure of the
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orbit T x of x ∈ X in X, denoted by T x, is the union of T x and ωT (x), i.e.,
T x = T x ∪ ωT (x). A point x ∈ X is called a transitive point of (X, T ) if
T x = X.

(X, T ) is called
(i) point transitive if (X, T ) contains at least one transitive point;
(ii) transitive if N(U, V ) 6= ∅ for each pair of nonempty open subsets U and

V of X;
(iii) minimal if T x = X for every x ∈ X; equivalently, there is no proper

nonempty closed T -invariant subset of X.
A point x ∈ X is called minimal if the subsystem (T x, T ) of (X, T ) is

minimal.
In the following, we give several lemmas which are necessary for the proofs

of the main results of the paper.

Lemma 2.2 ([6, Theorem 1.15]). Every point of a minimal Zd+-action is almost
periodic.

Lemma 2.3 ([6, Theorem 1.17]). Let x ∈ X. Then T x is minimal if x is an
almost periodic point of (X, T ).

Lemma 2.4. For all x ∈ X and U ⊂ X, it holds that

d(N(x, U)) + d(N(x,X − U)) = 1

and
d(N(x, U)) + d(N(x,X − U)) ≤ 1.

Proof. Since the proof is simple, we omit it. �

2.3. Ergodic theory of Zd
+-actions

For convenience, we always assume that (X, T ) is a Zd+-action.
Denote by B(X) the Borel σ-algebra of X and by M(X) the collection of

all probability measures on X. A probability measure µ ∈M(X) is said to be
T -invariant if Thµ = µ for all h ∈ Zd+, where Thµ(A) := µ(T−hA) for every
A ∈ B(X). A T -invariant measure µ ∈M(X) is said to be ergodic if µ(A) = 0
or µ(A) = 1 whenever A ∈ B(X) with T−hA = A for every h ∈ Zd+. Denote
by M(X, T ) and Me(X, T ) the sets of all T -invariant measures and ergodic
measures of M(X). It is well known that M(X) is a convex, compact and
metrizable space endowed with the weak*-topology and M(X, T ) is a compact
convex subset of M(X) (see [16]). For µ ∈ M(X, T ), denote by supp(µ) the
support of µ, i.e., the smallest closed set S ⊂ X with µ(S) = 1. A point x ∈ X
is said to be a support point of µ ∈ M(X, T ) if µ(B(x, ε)) > 0 for each ε > 0,
where B(x, ε) denotes the ε-neighborhood of x ∈ X. It is clear that

supp(µ) = {x ∈ X : µ(B(x, ε)) > 0,∀ε > 0}.
A point x ∈ X is said to be a support point of (X, T ) if for each ε > 0 there

exists µ ∈ M(X, T ) such that µ(B(x, ε)) > 0. Denote by supp(X, T ) the set
of all support points of (X, T ).
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x ∈ X determines an element δx of M(X) as follows: for each A ∈ B(X),

δx(A) =

{
1, if x ∈ A,
0, otherwise.

It is easy to see that 1
λn

∑
h∈Λn

δThx ∈ M(X) for each x ∈ X and n ∈ N. Let

Mx denote the set of all limit points of { 1
λn

∑
h∈Λn

δThx}∞n=1. Write MX0
=⋃

x∈X0
Mx for a nonempty subset X0 of X. From Lemmas 4.1.2 and 4.1.3 in

[7], it follows that ∅ 6= Mx ⊂M(X, T ) for each x ∈ X.
We state the following lemmas which play a considerable role in the proofs

of our results.

Lemma 2.5 ([5, Theorem B.11]). Let E be an open subset of X and F be a
closed subset of X, µi, µ ∈M(X), i ≥ 1, and µi → µ under the weak*-topology
as i→∞. Then

lim inf
i→∞

µi(E) ≥ µ(E) and lim sup
i→∞

µi(F ) ≤ µ(F ).

Birkhoff’s Ergodic Theorem, Ergodic Decomposition Theorem and Mean
Ergodic Theorem are important tools for the study of ergodic theory. In [7], the
author gave Birkhoff’s Ergodic Theorem and Ergodic Decomposition Theorem
for Zd+-actions as follows.

Lemma 2.6 (Birkhoff’s Ergodic Theorem, [7, Theorem 2.1.5]). Let (X, T ) be
a Zd+-action and µ ∈ M(X, T ). Then for every f ∈ L1(X,B(X), µ), there is

a T -invariant function f̃ ∈ L1(X,B(X), µ) (that is f̃ ◦ Th = f̃ a.e for each
h ∈ Zd+) such that

lim
n→∞

1

λn

∑
h∈Λn

f(Thx) = f̃(x)

for µ-a.e x ∈ X. In particular, if µ is ergodic, then f̃ =
∫
fdµ.

Lemma 2.7 (Ergodic Decomposition Theorem, [7, Theorem 2.3.3]). Let (X, T )
be a Zd+-action and (X,B(X), µ, T ) be a measure preserving dynamical system
with underlying probability space (X,B(X), µ), where µ is a Borel measure on
X, and C = {B ∈ B(X) : T−hB = B for every h ∈ Zd+}. Then there is a
conditional probability distribution (µx|x ∈ X) for µ(·|C)(x) such that

(1) µThx = µx for all x ∈ X and h ∈ Zd+;
(2) µx is ergodic.

However, we haven’t seen Mean Ergodic Theorem for Zd+-actions and we
prove it as below since it is necessary for the proofs of our main results.

Lemma 2.8 (Mean Ergodic Theorem). Let (X, T ) be a Zd+-action and µ ∈
M(X, T ). Then for every f ∈ L2(X,B(X), µ), there is a T -invariant function

f̃ ∈ L2(X,B(X), µ) such that

lim
n→∞

1

λn

∑
h∈Λn

f ◦ Th = f̃ in L2(X,B(X), µ).
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In particular, if µ is ergodic, then f̃ =
∫
fdµ.

Proof. Let µ ∈M(X, T ). If g is bounded and measurable, then

g ∈ L2(X,B(X), µ)

and

lim
n→∞

1

λn

∑
h∈Λn

g(Thx) = g̃(x)

for µ-a.e x ∈ X by Birkhoff’s Ergodic Theorem. Hence, g̃ ∈ L2(X,B(X), µ).
By Bounded Convergence Theorem, for each x ∈ X,∥∥∥∥∥ 1

λn

∑
h∈Λn

g(Thx)− g̃(x)

∥∥∥∥∥
2

→ 0.

Let f ∈ L2(X,B(X), µ) and An(f)(x) = 1
λn

∑
h∈Λn

f(Thx) for every x ∈ X.

Next we show that {An(f)}∞n=1 is a Cauchy sequence in L2(X,B(X), µ). Let
ε > 0, there exists N ∈ N such that if n > N and k ∈ N, then∥∥∥∥∥∥ 1

λn

∑
h∈Λn

g(Thx)− 1

λn+k

∑
h∈Λn+k

g(Thx)

∥∥∥∥∥∥
2

< ε/2

for each x ∈ X. Take g ∈ L∞(X,B(X), µ) such that ‖f − g‖2 < ε/4. Then for
n > N and k ∈ N,

‖An(f)−An+k(f)‖2 ≤ ‖An(f)−An(g)‖2 + ‖An(g)−An+k(g)‖2
+ ‖An+k(g)−An+k(f)‖2 < ε/4 + ε/2 + ε/4 = ε,

which implies that {An(f)}∞n=1 is a Cauchy sequence in L2(X,B(X), µ) and so

‖An(f)− f̃‖2 → 0

for some f̃ ∈ L2(X,B(X), µ).
Let {e1, . . . , ed} be the canonical basis of Zd+. As f = f+ − f−, it suffices

to prove this result for 0 ≤ f ∈ L2(X,B(X), µ). For i = 1, . . . , d, we have, for
each x ∈ X,

An(f) ◦ T ei(x)

= An(f)(x)− 1

λn

∑
h∈Λn,hi=0

f ◦ Th(x) +
1

λn

∑
h∈(Λn+ei)−Λn

f ◦ Th(x)

≥ An(f)(x)− 1

n

 1

nd−1

∑
h∈Λn,hi=0

f ◦ Th
 (x).

Therefore, we have

lim
n→∞

An(f) ◦ T ei(x) ≥ lim
n→∞

An(f)(x)
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for µ-a.e x ∈ X. At the same time,
∑
h∈Λn

f(Th+eix) ≤
∑
h∈Λn+1

f(Thx) and

hence

lim
n→∞

An(f) ◦ T ei ≤ lim
n→∞

(n+ 1)d

nd
Λn+1(f) = lim

n→∞
An(f).

So we have f̃ ◦ T ei = f̃ a.e for each i ∈ {1, . . . , d}. Then, f̃ ◦ Th = f̃ a.e for

each h ∈ Zd+ by h =
∑d
i=1 hiei (hi ∈ Z+, i = 1, 2, . . . , d). �

3. Weakly almost periodic points and quasi-weakly almost periodic
points and minimal center of attractions of Zd

+-actions

The notions of weakly almost periodic point and measure center were firstly
introduced by Zhou [15] for discrete dynamical systems, and it was proved that
the measure center of a discrete dynamical system is actually the closure of
the set of weakly almost periodic points. The concepts of quasi-weakly pe-
riodic point and minimal center of attraction were introduced in [17] and it
was proved that weakly almost periodic points and quasi-weakly almost pe-
riodic points have completely distinct ergodic properties. In this section, we
mainly introduce these notions for Zd+-actions and explore the relation between
a (quasi-)weakly almost periodic point and its minimal center of attraction. In
particular, let (X, T ) be a Zd+-action, we obtain that a point x ∈ X is quasi-
weakly almost periodic if and only if it belongs to its minimal center of attrac-
tion, and the support of each invariant measure generated by the orbit of a
given weakly almost periodic point y ∈ X is the minimal center of attraction of
y. The results given in this section are the analogues of the main results of [15]
and [17]. Refer to [2] and [3] for the similar notions and results for amenable
group actions.

3.1. Minimal center of attractions and measure centers of Zd
+-actions

Let (X, T ) be a Zd+-action and for convenience, we denote by Nx the collec-
tion of all open neighborhoods of x in X. In the following, we introduce the
concept of minimal center of attraction of a subset of X and we obtain some
basic properties of minimal center of attractions.

Definition 3.1. Suppose that X0 is a nonempty subset of X. A subset E of
X is called a center of attraction of X0 if E is closed and d(N(x,B(E, ε))) = 1
for each x ∈ X0 and ε > 0, where B(E, ε) denotes the ε-neighborhood of E. If
E is a center of attraction of X0 and there is no proper subset of E satisfying
the above conditions, then we say that E is the minimal center of attraction
of X0, denoted by CX0 . When X0 is a singleton, say X0 = {x}, we denote the
minimal center of attraction of {x} by Cx.

Example 3.1. Consider the unit circle K as below:
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N

θ

S

We define Th : K → K by Th(N) = N , Th(S) = S and if θ ∈ (−π2 ,
π
2 ), Th(θ) =

tan−1(tan(θ)/2h1+h2) for every h = (h1, h2) ∈ Z2
+. Let T = {Th}h∈Z2

+
. Then

(K, T ) is a Z2
+-action. It is clear that the singleton {S} is the minimal center

of attraction of every point of K − {N}.

Lemma 3.2. For every x ∈ X, Cx =
{
y ∈ X : d(N(x, U)) > 0, ∀U ∈ Ny

}
.

Proof. Let x ∈ X. Write

H =
{
y ∈ X : d(N(x, U)) > 0, ∀U ∈ Ny

}
.

Firstly, we prove that Cx ⊂ H, i.e., for every y ∈ Cx and U ∈ Ny, we have

d(N(x, U)) > 0. Suppose to the contrary that there exist y ∈ Cx and ε0 > 0
such that

d(N(x,B(y, ε0))) = 0,

which implies that Cx − B(y, ε0) is also a center of attraction of x. This is
contradictory to the minimality of Cx. Hence, Cx ⊂ H.

Next, we show that H ⊂ Cx. Suppose that there exists y ∈ H − Cx.
Take U ∈ Ny and an open neighborhood V of Cx with U ∩ V = ∅. Since

d(N(x, U)) > 0, by Lemma 2.4, we have d(N(x, V )) < 1 which is contradictory
to d(N(x, V )) = 1. Therefore, H ⊂ Cx. This ends the proof. �

Corollary 3.3. Let (X, T ) be a Zd+-action. For each x ∈ X, Cx is T -invariant.

Proof. Let y ∈ Cx, h ∈ Zd+ and U ∈ NThy. Then T−hU ∈ Ny. By Lemma 3.2,
we have

lim sup
n→∞

|Λn ∩N(x, U)|
λn

≥ lim sup
n→∞

|(Λn + h) ∩N(x, U)|
λn

= lim sup
n→∞

|Λn ∩N(x, T−hU)|
λn

> 0.

Therefore, Thy ∈ Cx, namely, Cx is T -invariant. �

Proposition 3.4. If Cx = X for some x ∈ X, then {y ∈ X : Cy = X} is
residual in X.

Proof. If x ∈ X with Cx = X, then for each nonempty open subset U of X,
N(x, U) has positive upper density by Lemma 3.2. Therefore, from Lemma
3.5, it follows that T x = X.
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Choose a countable basis U = {Ui}∞i=1 of X and for each i ∈ N, let ri :=

d(N(x, Ui)) > 0 and let

Ai =

∞⋂
m=1

⋃
n>m

{
y ∈ X :

|Λn ∩N(y, Ui)|
λn

>
ri
2

}
.

Then Ai is a Gδ-subset of X for each i ∈ N. Since T x ⊂ Ai for each i ∈ N,⋂∞
i=1Ai is a dense Gδ-subset of X. Since Cy = X for every y ∈

⋂∞
i=1Ai,

{x ∈ X : Cx = X} is residual in X. �

Lemma 3.5. Cx ⊂ T x for each x ∈ X. In particular, if x ∈ Cx, then
Cx = T x.

Proof. Let x ∈ X, it is clear that for each ε > 0, d(N(x,B(T x, ε))) = 1 which
shows that Cx ⊂ T x. If x ∈ Cx, then T x ⊂ Cx by the definition of Cx, and so
Cx = T x. �

Proposition 3.6. Let X0 be a nonempty subset of X. Then CX0 =
⋃
x∈X0

Cx.

In particular, CX =
⋃
x∈X Cx.

Proof. Let X0 ⊂ X be nonempty. Firstly, we show that CX0 ⊂
⋃
x∈X0

Cx. Let

U be an open neighborhood of
⋃
x∈X0

Cx. Then U is also an open neighborhood

of Cx for each x ∈ X0 which indicates that d(N(x, U)) = 1 for every x ∈ X0.

Hence, CX0
⊂
⋃
x∈X0

Cx by the minimality of CX0
.

Next, we prove that
⋃
x∈X0

Cx ⊂ CX0
. Otherwise, there exists y ∈

⋃
x∈X0

Cx
−CX0

. Choose an open neighborhood U of y and an open neighborhood V of
CX0

with U ∩V = ∅. Then Cx ∩U 6= ∅ for some x ∈ X0. Since d(N(x, U)) > 0
by Lemma 3.2, d(N(x, V )) < 1 by Lemma 2.4. This is a contradiction, and so⋃
x∈X0

Cx ⊂ CX0 . �

In the following, we introduce the concept of measure center for Zd+-actions
and give some basic properties of measure center.

Definition 3.2. Suppose that X0 is a nonempty subset of X. A subset E of
X is called the measure center of X0 if E is closed, T -invariant, µ(E) = 1 for
each µ ∈MX0 and there is no proper subset of E with these properties. Denote
by MC(X0) the measure center of X0. When X0 = X, we call MC(X) the
measure center of (X, T ).

Lemma 3.7. Let X0 ⊂ X be nonempty. Then MC(X0) =
⋃
µ∈MX0

supp(µ).

In particular, MC(X) =
⋃
µ∈MX

supp(µ).

Proof. Let X0 ⊂ X be nonempty. As µ(
⋃
ν∈MX0

supp(ν)) = 1 for each µ ∈
MX0

and
⋃
µ∈MX0

supp(µ) is closed and T -invariant, then

MC(X0) ⊂
⋃

µ∈MX0

supp(µ)
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by the minimality of MC(X0).
Since µ(MC(X0)) = 1 for each µ ∈ MX0

and MC(X0) is closed and

T -invariant, supp(µ) ⊂ MC(X0),
⋃
µ∈MX0

supp(µ) ⊂ MC(X0). Therefore,⋃
µ∈MX0

supp(µ) = MC(X0). �

Lemma 3.8. MC(X) = supp(X, T ).

Proof. By Lemma 3.7, it suffices to prove that supp(X, T ) =
⋃
µ∈MX

supp(µ).

Obviously,
⋃
µ∈MX

supp(µ) ⊂ supp(X, T ). It is left to prove that supp(X, T ) ⊂⋃
µ∈MX

supp(µ). Suppose that there exists y ∈ supp(X, T )−
⋃
µ∈MX

supp(µ).

Then there is ε > 0 such that µ(B(y, ε)) = 0 for all µ ∈MX which is contrary
to y ∈ supp(X, T ). This ends the proof. �

Proposition 3.9. Suppose that X0 ⊂ X is nonempty. Then

CX0
=

⋃
µ∈MX0

supp(µ) = MC(X0).

Particularly,

CX =
⋃

µ∈MX

supp(µ) = MC(X) and Cx =
⋃

µ∈Mx

supp(µ) = MC({x})

for all x ∈ X.

Proof. Let X0 ⊂ X be nonempty. By Lemma 3.7, it suffices to prove CX0
=

MC(X0).
Firstly, we claim that MC(X0) is a center of attraction of X0. Suppose to

the contrary that there exist ε0 > 0, x ∈ X0 and a subsequence {Λnk
}∞k=1 of

{Λn}∞n=1 such that

lim
k→∞

|Λnk
∩N(x,B(MC(X0), ε0))|

λnk

< 1.

Without loss of generality, we assume that

νk :=
1

λnk

∑
h∈Λnk

δThx → ν ∈Mx as k →∞.

Then from Lemmas 2.4 and 2.5,

ν(X −B(MC(X0), ε0)) ≥ lim sup
k→∞

νk(X −B(MC(X0), ε0))

= 1− lim inf
k→∞

νk(B(MC(X0), ε0)) > 0,

which is contrary to ν(MC(X0)) = 1. Thus, CX0 ⊂MC(X0).
Next, we prove that MC(X0) ⊂ CX0 . Assume to the contrary that there

exists y ∈MC(X0)− CX0
. Then we can choose an open neighborhood U of y

and an open neighborhood V of CX0
such that U∩V = ∅. By Lemma 3.7, there



TWO NEW RECURRENT LEVELS AND CHAOTIC DYNAMICS 1239

exists µ ∈MX0
such that µ(U) > 0. Without loss of generality, we assume that

1
λn

∑
h∈Λn

δThx → µ for some x ∈ X0. Then by Lemmas 2.5 and 2.4, we have

µ(V ) ≤ lim inf
n→∞

1

λn

∑
h∈Λn

δThx(V )

≤ 1− lim inf
n→∞

1

λn

∑
h∈Λn

δThx(X − V )

≤ 1− lim inf
n→∞

1

λn

∑
h∈Λn

δThx(U)

= 1− µ(U) < 1,

which is a contradiction since CX0
is the minimal center of attraction of X0.

Thus, CX0 = MC(X0). �

Proposition 3.10. Let x ∈ X. If x ∈ Cx, then ωT (x) =
⋃
µ∈Mx

supp(µ).

Proof. Let x ∈ X. Then it is clear that Cx ⊂ ωT (x). As x ∈ Cx and Cx is
closed and T -invariant, then ωT (x) ⊂ Cx. From Proposition 3.9, it follows that

ωT (x) =
⋃
µ∈Mx

supp(µ). �

3.2. Quasi-weakly almost periodic points and weakly almost periodic
points of Zd

+-actions

In this subsection, we introduce the concepts of quasi-weakly almost periodic
point and weakly almost periodic point of Zd+-actions and we give some basic
properties of quasi-weakly almost periodic points and weakly almost periodic
points. Moreover, we present some equivalent conditions for a point in the
state space to be a (quasi-)weakly almost periodic point for Zd+-actions.

For the sake of description, we always assume that (X, T ) is a Zd+-action.

Definition 3.3. x ∈ X is said to be a weakly almost periodic point of (X, T )
if for each open neighborhood U of x,

d(N(x, U)) = lim inf
n→∞

|{h ∈ Λn : Thx ∈ U}|
λn

> 0;

x ∈ X is said to be a quasi-weakly almost periodic point of (X, T ) if for each
open neighborhood U of x,

d(N(x, U)) = lim sup
n→∞

|{h ∈ Λn : Thx ∈ U}|
λn

> 0.

The sets of all weakly almost periodic points and quasi-weakly almost peri-
odic points of (X, T ) are denoted by W (T ) and QW (T ), respectively.

Proposition 3.11. W (T ) and QW (T ) are T -invariant.
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Proof. Assume that x ∈ W (T ). Then it is enough to show that T lx ∈ W (T )
for each l ∈ Zd+. Let l ∈ Zd+ and U be an open neighborhood of T lx, pick an

open neighborhood V of x such that T lV ⊂ U by the continuity of T l. Since

x ∈W (T ), lim inf
n→∞

|{h∈Λn:Thx∈V }|
λn

> 0. Therefore,

lim inf
n→∞

|{h ∈ Λn : Th+lx ∈ U}|
λn

≥ lim inf
n→∞

|{h ∈ Λn : Thx ∈ V }|
λn

> 0.

Then T lx ∈W (T ) by the arbitrariness of U which implies W (T ) is T -invariant.
Similarly, we can prove that QW (T ) is T -invariant. �

Proposition 3.12. W (T ) ⊂ QW (T ) ⊂ supp(X, T ).

Proof. It is obvious that W (T ) ⊂ QW (T ) and so it suffices to prove QW (T ) ⊂
supp(X, T ).

Let x ∈ QW (T ). Then for every ε > 0, we have

lim sup
n→∞

|Λn ∩N(x,B(x, ε/2))|
λn

> 0.

Without loss of generality, we assume that, under the weak*-topology,

1

λn

∑
h∈Λn

δThx → µ ∈Mx as n→∞.

Then by Lemma 2.5,

µ(B(x, ε)) ≥ µ(B(x, ε/2)) ≥ lim sup
n→∞

|Λn ∩N(x,B(x, ε/2))|
λn

> 0.

And so x ∈ supp(X, T ), i.e., QW (T ) ⊂ supp(X, T ). �

Proposition 3.13. Let x ∈ X and C be a nonempty closed subset of X. If
d(N(x,C)) > 0, then there exists ν ∈Mx such that ν(C) > 0.

Proof. Let x ∈ X and C ⊂ X be a nonempty closed set such that d(N(x,C)) >
0. Then there exists a subsequence {Λnk

}∞k=1 of {Λn}∞n=1 such that

lim
k→∞

|Λnk
∩N(x,C)|
λnk

> 0.

Without loss of generality, assume that limk→∞
1
λnk

∑
h∈Λnk

δThx = ν under

the weak*-topology. Clearly, ν ∈Mx, and by Lemma 2.5,

ν(C) ≥ lim sup
k→∞

1

λnk

∑
h∈Λnk

δThx(C) > 0.

�

Corollary 3.14. Let x ∈ QW (T ) and U ∈ Nx. Then there is ν ∈ Mx such
that ν(U) > 0.

Proposition 3.15. Let x ∈ R(T ). If Cx = ωT (x), then x ∈ QW (T ).
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Proof. Suppose x ∈ R(T ) and Cx = ωT (x). Then x ∈ ωT (x) = Cx. If
x /∈ QW (T ), by the definition of quasi-weakly almost periodic point, there
exists ε0 > 0 such that N(x,B(x, ε0)) has upper density zero. From Lemma
3.2, x /∈ Cx which is a contradiction. Therefore, x ∈ QW (T ). �

Lemma 3.16. Let x ∈ R(T ). Then x ∈W (T ) if and only if ωT (x) = supp(µ)
for each µ ∈Mx.

Proof. Suppose x ∈ W (T ) and µ ∈ Mx. Then there exists a subsequence
{Λnk

}∞k=1 of {Λn}∞n=1 such that

µk =
1

λnk

∑
h∈Λnk

δThx → µ ∈Mx

under the weak*-topology as k →∞. Let ε > 0, choose δ > 0 such that δ < ε.
Then we have

µ(B(x, ε)) ≥ µ(B(x, δ)) ≥ lim sup
k→∞

µk(B(x, δ)) > 0.

Let h ∈ Zd+ and U ∈ NThx. Then T−hU is an open neighborhood of x and

µ(U) = µ(T−hU) > 0. Since T x is dense in ωT (x), for each y ∈ ωT (x) and
each open neighborhood V of y, there exists l ∈ Zd+ such that V is an open

neighborhood of T lx which implies that µ(V ) > 0 by the above discussions.
Hence, every point in ωT (x) is a support point of µ, i.e., ωT (x) ⊂ supp(µ).

Next, we show that supp(µ) ⊂ ωT (x) for each µ ∈ Mx. Suppose µ ∈ Mx

and y ∈ supp(µ). Then for each ε > 0, we have µ(B(y, ε)) > 0. Without loss
of generality, assume that when k →∞,

1

λnk

∑
h∈Λnk

δThx → µ

under the weak*-topology. By Lemma 2.5,

0 < µ(B(y, ε)) ≤ lim inf
k→∞

1

λnk

∑
h∈Λnk

δThx(B(y, ε)).

It shows that there exists h ∈ Zd+ such that Thx ∈ B(y, ε), i.e., y ∈ ωT (x).
Therefore, ωT (x) = supp(µ) for every µ ∈Mx.

Conversely, it is clear that x ∈ ωT (x) since x ∈ R(T ). If x /∈ W (T ), then
there exist ε0 > 0 and a subsequence {Λnk

}∞k=1 of {Λn}∞n=1 such that

lim
n→∞

|{h ∈ Λnk
: Thx ∈ B(x, ε0)}|
λnk

= 0.

Without loss of generality, we assume that when k →∞,

1

λnk

∑
h∈Λnk

δThx → µ ∈Mx
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under the weak*-topology. By Lemma 2.5,

µ(B(x, ε0)) ≤ lim inf
k→∞

1

λnk

∑
h∈Λnk

δThx(B(x, ε0)) = 0,

which implies that x is not a support point of µ. Thus, ωT (x) 6= supp(µ) by
x ∈ ωT (x). �

Theorem 3.17. Let x ∈ R(T ). Then the following statements are equivalent:
(1) x ∈ QW (T );
(2) x ∈ Cx;

(3) ωT (x) =
⋃
µ∈Mx

supp(µ);

(4) Cx = ωT (x).

Proof. By Lemma 3.2, Definition 3.3 and Propositions 3.9, 3.10 and 3.15, the
proof is straightforward. �

Theorem 3.18. QW (T ) is Borel measurable and has full measure for each
µ ∈M(X, T ).

Proof. Let k, n,m ∈ N and t > 0 and Ak(t,m, n) be the set of all points
x ∈ X with the property that there exists some open neighborhood U of x
with diam(U) < 1

k such that

|Λn ∩N(x, U)|
λn

> t− 1

m
,

where diam(B) denotes the diameter of B. For every k ∈ N, let

Ak =

∞⋃
i=1

∞⋂
m=1

∞⋃
n=m

Ak

(
1

i
, n,m

)
.

Then QW (T ) =
⋂∞
k=1Ak is Borel measurable since every Ak( 1

i , n,m) is open.
Next, we show that µ(QW (T )) = 1 for each µ ∈ M(X, T ). It suffices

to prove that the result holds for each ergodic measure by Lemma 2.7. Let
µ ∈ Me(X, T ), we show that µ(Ak) = 1 for each k ∈ N. If otherwise, there
exists k0 ∈ N such that µ(Ak0) < 1. We can choose some measurable set
B ⊂ X −Ak0 with µ(B) > 0 and diam(B) < 1

3k0
. Let

f(x) = lim sup
n→∞

1

λn

∑
h∈Λn

χT−hB(x)

for each x ∈ X, where χE denotes the characteristic function of E ⊂ X. Then
f(x) is Borel measurable and 0 ≤ f(x) ≤ 1 for every x ∈ X. By Mean Ergodic
Theorem,

lim
n→∞

1

λn

∑
h∈Λn

χT−hB = lim
n→∞

1

λn

∑
h∈Λn

χB ◦ Th = µ(B)
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under the L2-norm ‖ · ‖2 of L2(X,B(X), µ). By Fatou’s Lemma, we have∫
B

f(x)dµ(x) ≥ lim sup
n→∞

∫
B

1

λn

∑
h∈Λn

χT−hB(x)dµ(x) = µ(B)2 > 0,

which implies that there is x ∈ B such that f(x) > 0. Let

U = B

(
x,

2

3k0

)
=

{
y ∈ X : ρ(x, y) <

2

3k0

}
.

Then B ⊂ U which indicates that d̄(N(x, U)) ≥ f(x) > 0. Therefore, x ∈ Ak0
which is contrary to x ∈ B ⊂ X − Ak0 . This contradiction implies µ(Ak) = 1
for every k ∈ N and so µ(

⋂∞
k=1Ak) = 1. Thus, µ(QW (T )) = 1 for each

µ ∈M(X, T ). �

For the sake of description of the next result, we introduce the notion of
generic point for a given probability measure on X.

Definition 3.4. Let µ ∈M(X). x ∈ X is said to be a generic point for µ if

lim
n→∞

1

λn

∑
h∈Λn

f(Thx) =

∫
X

fdµ

for each f ∈ C(X,R), where C(X,R) denotes the collection of all continuous
real-valued functions on X. Denote by Tµ the set of all generic points for
µ ∈M(X).

The following lemma is a consequence of Birkhoff’s Ergodic Theorem.

Lemma 3.19. For every µ ∈ Me(X, T ), almost every point in X is generic
for µ.

Corollary 3.20. Me(X, T ) ⊂MX .

Theorem 3.21. W (T ) is Borel measurable and has full measure for each µ ∈
M(X, T ).

Proof. Let

ψ

(
x,

1

k

)
= lim inf

n→∞

|Λn ∩N(x,B(x, 1
k ))|

λn

be a map from X to [0, 1] for every k ∈ N. Then ψ(x, 1
k ) is Borel measurable

every k ∈ N. Write

W =

∞⋂
k=1

{
x ∈ X : ψ

(
x,

1

k

)
> 0

}
,

we obtain that W (T ) = W which shows that W (T ) is Borel measurable.
Next we show that µ(W (T )) = 1 for each µ ∈ M(X, T ). We need only to

prove the result for each µ ∈Me(X, T ) by Lemma 2.7.
Let µ ∈Me(X, T ), we claim that supp(µ)∩Tµ ⊂W (T ). Let x ∈ supp(µ)∩

Tµ and U ∈ Nx. Let V ∈ Nx with x ∈ V ⊂ V ⊂ U . Then µ(V ) > 0. By
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Urysohn’s Lemma, there exists a continuous function φ : X → [0, 1] such that
φ(y) = 1 for each y ∈ V and φ(y) = 0 for each y ∈ X − U . As

lim inf
n→∞

|Λn ∩N(x, U)|
λn

≥ lim inf
n→∞

1

λn

∑
h∈Λn

φ(Thx)

=

∫
X

φdµ = µ(V ) ≥ µ(V ) > 0,

x ∈ W (T ) by the arbitrariness of U . Then supp(µ) ∩ Tµ ⊂ W (T ). Since
µ(supp(µ)∩Tµ) = 1 by Lemma 3.19 and the definition of supp(µ), µ(W (T )) =
1. This ends the proof. �

Proposition 3.22. MC(X) = W (T ) = QW (T ).

Proof. By Theorem 3.21, µ(W (T )) = 1 for each µ ∈ MX which shows that

MC(X) ⊂W (T ). It follows from Lemma 3.8 and Proposition 3.12 that

W (T ) ⊂ supp(X, T ) = MC(X).

Hence, MC(X) = W (T ). By Proposition 3.12 again, we obtain that MC(X) =

QW (T ) = W (T ). �

Theorem 3.23. QW (T ) is residual in X if there exists µ ∈ Me(X, T ) such
that supp(µ) = X.

Proof. Let µ ∈ Me(X, T ) with supp(µ) = X and U = {Ui}∞i=1 be a countable
basis of X. For each i ∈ N, we can take a nonempty open subset Vi of X
satisfying Vi ⊂ Ui. Let ri = µ(Vi). Then ri > 0 for each i ∈ N. By Urysohn’s
Lemma, for each i ∈ N, there exists a continuous function φi : X → [0, 1] such
that φi(y) = 1 for each y ∈ Vi and φi(y) = 0 for each y ∈ X − Ui. Let x ∈ Tµ,
then for each i ∈ N,

lim inf
n→∞

|Λn ∩N(x, Ui)|
λn

≥ lim inf
n→∞

1

λn

∑
h∈Λn

φi(T
hx)

=

∫
X

φidµ = µ(Vi) ≥ µ(Vi) > 0.

Hence, the upper density of N(x, Ui) is larger than ri for each i ∈ N. Let i ∈ N
and

Ai =

∞⋂
m=1

⋃
n>m

{
y ∈ X :

|Λn ∩N(y, Ui)|
λn

> ri/2

}
.

Then every generic point for µ belongs to Ai and Ai is a Gδ-subset of X for
each i ∈ N. By Lemma 3.19, Tµ is dense in X. Then,

⋂∞
i=1Ai ⊂ QW (T ) and⋂∞

i=1Ai is a dense Gδ-subset of X. Therefore, QW (T ) is residual. �

Theorem 3.24. W (T ) contains a dense Fσδ-subset of X if there exists µ ∈
Me(X, T ) with supp(µ) = X.
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Proof. Let µ ∈ Me(X, T ) and U = {Ui}∞i=1 be a countable basis of X. For
each i ∈ N, we can take a nonempty open subset Vi of X satisfying Vi ⊂ Ui.
Let ri = µ(Vi) > 0 for each i ∈ N. By Urysohn’s Lemma, for each i ∈ N, there
exists a continuous function φi : X → [0, 1] such that φi(y) = 1 for each y ∈ Vi
and φi(y) = 0 for each y ∈ X − Ui. Let x ∈ Tµ. Then

lim inf
n→∞

|Λn ∩N(x, Ui)|
λn

≥ lim inf
n→∞

1

λn

∑
h∈Λn

φi(T
hx)

=

∫
X

φidµ = µ(Vi) ≥ µ(Vi) > 0.

Hence for each i ∈ N, the lower density of N(x, Ui) is larger than ri. For each
i ∈ N, let

Ai =

∞⋃
m=1

⋂
n>m

{
y ∈ X :

|Λn ∩N(y, Ui)|
λn

≥ ri
2

}
.

Then every generic point for µ belongs to Ai and Ai is a Fσ-subset of X for
each i ∈ N. By Lemma 3.19, Tµ is dense in X. Therefore,

⋂∞
i=1Ai ⊂ W (T )

and
⋂∞
i=1Ai is a dense Fσδ-subset of X, which implies that W (T ) contains a

dense Fσδ-subset of X. �

Inspired by Lemma 3.2, for every x ∈ X, we write

Ix =

{
y ∈ X : lim inf

n→∞

|Λn ∩N(x, U)|
λn

> 0,∀U ∈ Ny
}
.

Proposition 3.25. If there exists x ∈ X such that Ix = X, then the set
{x ∈ X : Ix = X} contains a dense Fσδ-subset of X.

Proof. Let x ∈ X with Ix = X. Then for each nonempty open subset U of X,
N(x, U) has positive lower density. By the definition of Ix and Lemma 3.5, we
obtain that T x = X.

Choose a countable topological base U = {Ui}∞i=1 of X. For each i ∈ N, let
ri be the lower density of N(x, Ui) and let

Ai =

∞⋃
m=1

⋂
n>m

{
y ∈ X :

|Λn ∩N(y, Ui)|
λn

≥ ri/2
}
.

Then Ai is a Fσ-subset of X for each i ∈ N. Since T x ⊂ Ai for each i ∈ N,⋂∞
i=1Ai is a dense Fσδ-subset of X. Since Iy = X for every y ∈

⋂∞
i=1Ai, the

set {x ∈ X : Ix = X} contains a dense Fσδ-subset of X. �

Proposition 3.26. Let x ∈ X. Then Ix =
⋂
µ∈Mx

supp(µ).

Proof. Let x ∈ X. On one hand, we show that Ix ⊂
⋂
µ∈Mx

supp(µ). Let

y ∈ Ix and µ ∈ Mx. We assume that the subsequence {Λnk
}∞k=1 of {Λn}∞n=1

satisfies

µk :=
1

λnk

∑
h∈Λnk

δThx → µ
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under the weak*-topology as k → ∞. Let U be an open neighborhood of y,
we can choose an open neighborhood V of y satisfying y ∈ V ⊂ V ⊂ U . By
Lemma 2.5,

µ(U) ≥ µ(V ) ≥ lim sup
k→∞

µk(V ) ≥ lim inf
k→∞

µk(V ) > 0.

Thus y ∈
⋂
µ∈Mx

supp(µ) by the arbitrariness of U which implies that Ix ⊂⋂
µ∈Mx

supp(µ).

On the other hand, we show that
⋂
µ∈Mx

supp(µ) ⊂ Ix. Assume to the

contrary that there exists y ∈
⋂
µ∈Mx

supp(µ) but y /∈ Ix. Then we can choose

an open neighborhood U of y and a subsequence {Λnk
}∞k=1 of {Λn}∞n=1 such

that

lim
k→∞

|Λnk
∩N(x, U)|
λnk

= 0.

Without loss of generality,

νk :=
1

λnk

∑
h∈Λnk

δThx → ν ∈Mx

under the weak*-topology as k →∞. Then it follows from Lemma 2.5 that

ν(U) ≤ lim inf
k→∞

νk(U) = 0.

It is a contradiction as y ∈
⋂
ν∈Mx

supp(ν). Hence,
⋂
ν∈Mx

supp(ν) ⊂ Ix. This
ends the proof. �

From the above results of weakly almost periodic point and the definition of
minimal center of attraction, we can obtain the following theorem.

Theorem 3.27. Let x ∈ R(T ). Then the following statements are equivalent.
(1) x ∈W (T );
(2) x ∈ Ix;
(3) x ∈ Cx = supp(µ), ∀µ ∈Mx;
(4) supp(µ) = ωT (x), ∀µ ∈Mx.

4. Chaotic dynamics of minimal center of attractions of Zd
+-actions

Let (X, T ) be a Zd+-action. Recall that a pair (x, y) ∈ X ×X is

(1) asymptotic if for every n ∈ N, there exists a finite subset Λ of Zd+ such

that ρ(Thx, Thy) < 1
n for all h ∈ Zd+ − Λ.

(2) proximal if there exists a sequence {hn}∞n=1 of Zd+ such that

lim
n→∞

ρ(Thnx, Thny) = 0.

(3) Li-Yorke chaotic if (x, y) is proximal but not asymptotic.
For any U ⊂ X and δ > 0, write

ST (U, δ) = {h ∈ Zd+ : there exist x, y ∈ U such that ρ(Thx, Thy) > δ}.

A Zd+-action (X, T ) is called
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(1) strongly ergodic if for any pair of nonempty open subsets U , V of X,
N(U, V ) is syndetic;

(2) sensitive if there is δ > 0 such that for any nonempty open subset U of
X, ST (U, δ) 6= ∅.

Next, we present some chaotic properties of a Zd+-action with proper (quasi-)
weakly almost periodic points. To do that, we need the following lemma.

Lemma 4.1 ([6, Theorem 8.7]). For each x ∈ X, there exists y ∈ A(T ) such
that (x, y) is proximal.

Proposition 4.2. If there exists a proper weakly almost periodic point x ∈ X,
i.e., x ∈W (T )−A(T ), then (X, T ) contains at least countable Li-Yorke pairs.

Proof. Let x ∈W (T )−A(T ). Then it follows from Lemma 4.1 that there exists
y ∈ A(T ) such that (x, y) is proximal. Denote A = T y. Then there exists ε > 0
such that ρ(B(x, ε), A) > 0, where ρ(C,D) = inf{ρ(c, d) : c ∈ C, d ∈ D} for
C, D ⊂ X. Set

S = {h ∈ Zd+ : Thx ∈ B(x, ε)}.
Then S has positive lower density by x ∈W (T ). Since for each h ∈ S, Thy ∈ A
and Thx ∈ B(x, ε), then ρ(Thx, Thy) > ρ(B(x, ε), A) > 0 for each h ∈ S, which
implies suph∈Zd

+
ρ(Thx, Thy) > 0. So (x, y) is a Li-Yorke pair. It is clear that

(Thx, Thy) is also a Li-Yorke pair for every h ∈ Zd+. Since Zd+ is infinitely
countable, (X, T ) contains countable Li-Yorke pairs. �

Remark 4.3. Similarly, we can prove that if there exists a proper quasi-weakly
almost periodic point x ∈ X, i.e., x ∈ QW (T ) −W (T ), then (X, T ) contains
at least countable Li-Yorke pairs.

4.1. Chaotic dynamics near or inside minimal center of attractions
of Zd

+-actions

In this section, we mainly investigate the chaotic dynamics near the minimal
center of attraction of a point in the setting that the involved minimal center
of attraction is non S-generic and the chaotic dynamics inside the minimal
center of attraction of a point in the setting that the involved minimal center
of attraction is S-generic.

For convenience, in the rest of this section, we always assume that (X, T ) is
a Zd+-action.

Definition 4.1. A T -invariant subset Λ of X is called S-generic if there exists
some point x ∈ Λ such that Λ = Cx.

Definition 4.2 ([6]). A subset S ⊂ Zd+ is called a central set if there exist a

Zd+-action (Y, T ), a point x ∈ Y and an almost periodic point y ∈ Y of (Y, T )

which is proximal to x and U ∈ Ny such that S = {h ∈ Zd+ : Thx ∈ U}.

Lemma 4.4. If (x, y) ∈ X ×X is asymptotic, then Cx = Cy.
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Proof. Suppose that (x, y) ∈ X × X is asymptotic. Let z ∈ Cx and U ∈ Nz.
Then we can choose ε > 0 such that B(z, ε) ⊂ U . As (x, y) is asymptotic, there
exists a finite subset Λ of Zd+ such that ρ(Thx, Thy) < ε/2 for all h ∈ Zd+ − Λ.

Then, N(x,B(z, ε/2)) − Λ ⊂ N(y, U). By Lemma 3.2, d(N(x,B(z, ε/2))) =
α > 0. Therefore, there exists a subsequence {Λnk

}∞k=1 of {Λn}∞n=1 such that

lim
k→∞

|Λnk
∩N(x,B(z, ε/2))|

λnk

= d(N(x,B(z, ε/2))),

which implies that

lim
k→∞

|Λnk
∩ (N(x,B(z, ε/2))− Λ)|

λnk

= α.

Thus,

d(N(y, U)) ≥ d(N(x,B(z, ε/2))− Λ) > 0.

It follows that z ∈ Cy from the arbitrariness of U and so Cx ⊆ Cy. Similarly,
we can prove that Cy ⊆ Cx. �

The following two lemmas are necessary for the proofs of the following the-
orems.

Lemma 4.5 ([12, Proposition 2.11]). If Λ is a nonempty T -invariant closed
subset of T x, then for any open neighborhood U of Λ, N(x, U) is thick in Zd+.

Lemma 4.6 ([12, Lemma 3.8]). Suppose that (X, T ) is transitive and x is a
transitive point of (X, T ). Then N(U, V ) = (N(x, V ))−1N(x, U) for every pair
of nonempty open subsets U, V of X.

4.1.1. Non S-generic cases. In this subsection, we prove that if the minimal
center of attraction of a point is non S-generic, then there exist certain Li-Yorke
chaotic properties in the involved minimal center of attraction and sensitivity
near the involved minimal center of attraction.

Definition 4.3. If (X, T ) is point transitive and sensitive, then (X, T ) is called
Auslander-Yorke chaotic.

Theorem 4.7. Let x ∈ X. If Cx is not S-generic, then one can find some
point y ∈ Λ such that (x, y) is Li-Yorke chaotic for each closed T -invariant
subset Λ of Cx.

Proof. Let x ∈ X such that Cx is not S-generic. Then x /∈ Cx by Lemma 3.5.
Let Λ ⊂ Cx be a nonempty T -invariant closed set. From Zorn’s Lemma, there
exists a minimal set Λ1 ⊂ Λ. From Lemma 3.2, it follows that x is proximal to
Λ1, that is, there exists a sequence {tn}∞n=1 in Zd+ such that lim

n→∞
ρ(T tnx,Λ1) =

0. Then from Proposition 8.6 of [6], there exists some point y ∈ Λ1 such that
(x, y) is proximal. Obviously, (x, y) is not asymptotic. Otherwise, Cx = Cy by
Lemma 4.4 which shows that Cx is S-generic. This is a contradiction. Thus
(x, y) is a Li-Yorke pair. �
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Corollary 4.8. Let x ∈ X. If Cx is not S-generic, then there exists y ∈ Cx
such that (x, y) is Li-Yorke chaotic and N(x,B(y, ε)) is a central set in Zd+. In
addition, N(x,B(y, ε)) has positive upper density.

Proof. Let Λ ⊂ Cx be a minimal set. Then there is a point y ∈ Λ such that
the pair (x, y) is Li-Yorke chaotic by Theorem 4.7. It follows that the set
N(x,B(y, ε)) is a central set in Zd+ for each ε > 0 by Definition 4.2. From
Lemma 3.2, N(x,B(y, ε)) has positive upper density. �

Corollary 4.9. Let x ∈ X. If there exists a fixed point or a periodic orbit in
Cx, then there exists a Li-Yorke chaotic pair near Cx.

Proof. Let x ∈ X. If Cx is not S-generic, then from Theorem 4.7, there always
exists a Li-Yorke chaotic pair near Cx. If Cx is S-generic, then T restricted to
Cx is topologically transitive and has a fixed point or a periodic orbit. From
Theorem 1.7 of [13], it follows that T restricted to Cx is chaotic in the sense of
Li-Yorke. �

Motivated by [1, 4, 8], we can obtain the following result on sensitivity near
the minimal center of attraction of x ∈ X if Cx is not S-generic.

Theorem 4.10. Let x ∈ X. If Cx is not S-generic and the almost periodic
points of (X, T ) are dense in Cx, then (X, T ) is sensitive near Cx in the fol-
lowing sense: one can find an ε > 0 such that for any points x1 ∈ X, x2 ∈ Cx
and any U ∈ Nx2

, there exist y ∈ U and h ∈ Zd+ with ρ(Thx1, T
hy) ≥ ε.

Proof. Let x ∈ X. If Cx is not S-generic, then Cx is not minimal. Therefore,
there exist two distinct minimal points z1, z2 ∈ X such that T z1 ∩ T z2 = ∅.
Write ρ(T z1, T z2) = 3δ > 0. Then for all a ∈ Cx, there exists a corresponding
orbit T b in Cx such that ρ(a, T b) ≥ δ. Next, we show that (X, T ) is sensitive
with a sensitivity constant ε = δ/4.

Let x2 ∈ Cx and U ∈ Nx2
. Since A(T ) ⊇ Cx, there exists p ∈ A(T ) such

that p ∈ U ∩ B(x2, ε/2) ∩ Cx. Thus, there exists another point z ∈ Cx such
that

ρ(T z, x2) ≥ 4ε.

Since p ∈ A(T ), there exists a finite subset F of Zd+ such that

Zd+ = F−1N(p,B(p, ε/2)).

By Lemma 3.2, there exists h ∈ Zd+ such that Thx ∈ U . By Lemma 4.5, there

exists h1 ∈ Zd+ such that

F + h+ h1 ⊂ N(x,B(T z, ε)).

As there exists some nonempty subset F ′ ⊂ F such that (F ′ + h + h1)h−1 ⊂
N(p,B(p, ε/2)). Take y = Thx. Then y ∈ U and ρ(T lp, T ly) ≥ 2ε for every
l ∈ (F ′+h+h1)h−1. Since both x2 and U are arbitrary, the result is proved. �
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4.1.2. S-generic cases. In this subsection, we prove that if the minimal center
of attraction of a point is S-generic, then there exist stronger Li-Yorke chaotic
dynamics and sensitivity in the involved minimal center of attraction.

Theorem 4.11. Let x ∈ X. If Cx is S-generic and not minimal, then there
exists a dense subset S of Cx such that for each y ∈ S and each minimal subset
Λ ⊂ Cx, there is z ∈ Λ satisfying: (z, y) is a Li-Yorke chaotic pair and there
exist two sequences {hn}∞n=1 and {ln}∞n=1 in Zd+ such that

lim
n→∞

ρ(Thny, z) = 0 and lim
n→∞

ρ(T lny, z) ≥ 1

2
diam(Cx).

Proof. Let x ∈ X and suppose that Cx is S-generic. Then there exists y ∈ Cx
such that Cy = Cx. Denote S = {y ∈ Cx : Cy = Cx}. Since Cx is not minimal,

T y is not minimal for each y ∈ S by Lemma 3.5. Let Λ be a minimal subset of
Cx. Then each y ∈ S is proximal to Λ by the proof of Theorem 4.7. Therefore,
for every y ∈ S, there exists some point z ∈ Λ such that (y, z) is proximal and
y is almost periodic by Proposition 8.6 of [6]. Clearly, the pair (y, z) is Li-Yorke
chaotic for (X, T ) and there exist two sequences {hn}∞n=1 and {ln}∞n=1 of Zd+
such that

lim
n→∞

ρ(Thny, z) = 0 and lim
n→∞

ρ(T lny, z) ≥ 1

2
diam(Cx).

In addition, since Zd+ is commutative, S is dense in Cx. �

Lemma 4.12. Let x ∈ X. If Cx = X and X has no isolated points, then
(X, T ) is strongly ergodic.

Proof. Let U , V be any nonempty open subsets of X. Since X has no isolated
points, (X, T ) is transitive by Lemma 3.5. Then we can take h ∈ Zd+ such that

U1 = U ∩ T−hV 6= ∅. As N(U, V ) ⊃ h + N(U1, U1), it suffices to show that
N(U1, U1) is syndetic. Let P be any thick subset of Zd+ with P 6= Zd+. Next,
we prove that N(U1, U1) ∩ P 6= ∅. By Lemma 3.2, there exists a subsequence
{Λnk

}∞k=1 of {Λn}∞n=1 such that

lim
k→∞

|Λnk
∩N(x, U1)|
λnk

> 0.

By Proposition 3.9, there exists µ ∈ M(X, T ) such that µ(U1) > 0. Choose
p1 ∈ P with p1 6= e = (0, 0, . . . , 0) ∈ Zd+. Since P is thick, there exists p2 ∈ Zd+
with p2 6= e such that p2, p1 + p2 ∈ P . Again from the thickness of P , there
exists p3 ∈ Zd+ with p3 6= e such that p3, p1 + p3, p2 + p3, p1 + p2 + p3 ∈ P .

Inductively, we obtain a sequence {pn}∞n=1 of Zd+ with pn 6= e for each n ∈ N
such that

p1, p2, p1 + p2, p3, p1 + p3, p2 + p3, p1 + p2 + p3, . . . ∈ P.

Set hn = p1 + p2 + · · · + pn for all n ∈ N. If {hn}∞n=1 has only finitely
many distinct elements of Zd+, then there exist m,n ∈ N with m < n such that
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hm = hn. Therefore, ThmU1 = ThnU1 which implies that pm+1 + · · · + pn ∈
N(U1, U1). Thus, P ∩N(U1, U1) 6= ∅.

If {hn}∞n=1 has infinitely many distinct elements of Zd+, then there exists a
subsequence {hnk

}∞k=1 of {hn}∞n=1 with hni 6= hnj for all i 6= j. Since µ is

T -invariant, T−hn
k′U1 ∩ T−hn

k′′U1 6= ∅ for some k′ > k′′ which implies that
pnk′′+1 + · · ·+ pnk′ ∈ N(U1, U1). Thus, N(U1, U1) ∩ P 6= ∅. �

The following theorem asserts that the minimal center of attraction of a point
exhibits Auslander-Yorke chaotic behaviors if it is S-generic but not minimal.

Theorem 4.13. Let x ∈ X. If Cx ⊂ X is S-generic and non-minimal, then
(Cx, T ) is point transitive and sensitive in the following sense: there is δ > 0
such that for each y ∈ X there exists a dense subset Bδ,y ⊂ X such that for
each y1 ∈ Bδ,y there exists a sequence {hn}∞n=1 ⊂ Zd+ satisfying

lim
n→∞

ρ(Thny, Thny1) ≥ δ.

In particular, (Cx, T ) is Auslander-Yorke chaotic.

Proof. Suppose Cx ⊂ X is S-generic and not minimal. Without loss of gener-
ality, we assume that Cx = X. Then (X, T ) is point transitive by Lemma 3.5.
Next, we prove that (X, T ) is sensitive.

Let M be a minimal subset of (X, T ). Take m ∈ X with ρ(m,M) > 0.
Let 3r = ρ(m,M) and U ⊂ X be any nonempty open subset of X. Since x
is a transitive point of (X, T ), there is h ∈ Zd+ such that x1 = Thx ∈ U . By
Lemmas 4.5 and 4.12, N(x,B(M, r)) is thick and N(U,B(m, r)) is syndetic
and it is not hard to prove that N(x1, B(M, r)) is also thick. Therefore, there
exist h1 ∈ N(x1, B(M, r)) ∩N(U,B(m, r)) and a nonempty open subset U1 of
X such that

U1 ⊂ U and U1 ⊂ U ∩ T−h1(B(m, r)).

Similarly, there exist h2 6= h1 such that h2 ∈ N(x1, B(M, r)) ∩N(U1, B(m, r))
and a nonempty open subset U2 of X satisfying

U2 ⊂ U1 and U2 ⊂ U1 ∩ T−h2(B(m, r)).

Repeating this construction, there are a sequence of nonempty open sets
{Un}∞n=1 ⊂ X and a sequence {hn}∞n=1 ⊂ Zd+ satisfying

U ⊃ U1 ⊃ U1 ⊃ U2 ⊃ · · · , Un+1 ⊂ Un ∩ T−hn+1(B(m, r)),

and hi 6= hj for each i 6= j. Therefore,
⋂∞
n=1 Un 6= ∅. Then for each y′ ∈⋂∞

n=1 Un,

y′ ∈ U and ρ(Thnx1, T
hny′) ≥ r

for all n ∈ N. Let δ = r/2. Then for each y ∈ X and each nonempty open set
U , there exist y1 ∈ U and a sequence {hn}∞n=1 ⊂ Zd+ such that

lim
n→∞

ρ(Thny, Thny1) ≥ δ.
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Let

By = {y1 ∈ X : lim
n→∞

ρ(Thny, Thny1) ≥ δ for some sequence {hn}∞n=1 ⊂ Zd+}

for y ∈ X. Then By is dense in X for each y ∈ X since the open set U is
arbitrary. In particular, (X, T ) is Auslander-Yorke chaotic. �

For n ∈ N, write X(n) =

n︷ ︸︸ ︷
X ×X × · · · ×X be the n-fold self-product of

X. A tuple (x1, . . . , xn) ∈ X(n) can determine a subset of X, denoted by
L(x1, . . . , xn), as follows: x ∈ L(x1, . . . , xn) if and only if for each 1 ≤ i ≤ n,
each Ui ∈ Nxi

and each U ∈ Nx, there are h ∈ Zd+ and x′i ∈ U such that

Th(x′i) ∈ Ui.
The following theorem shows that if the minimal center of attraction Cx

of x ∈ X is S-generic and non-minimal, then Cx exhibits more complicated
sensitivity than the non S-generic case given in Theorem 4.10.

Theorem 4.14. Let x ∈ X. If Cx is S-generic and non-minimal and A(T )
is dense in Cx, then (X, T ) has ℵ0-sensitivity near Cx in the following sense:
one can find an infinitely countable subset K of Cx such that for any k distinct
points x1, . . . , xk ∈ K with k ≥ 2, it holds Cx ⊂ L(x1, . . . , xk).

Proof. Assume that Cx is S-generic. Then there exists y ∈ Cx such that
Cx = Cy which shows that y is a transitive point of (Cx, T ). We prove the
result by six steps as follows. Let z ∈ Cx and U ∈ Nz.

Step 1. We show that N(y, U) is piecewise syndetic in Zd+. By Theorem 3.4

of [12], N(y, U) is piecewise syndetic in Zd+ since (Cx, T ) is an M -system, i.e.,
(Cx, T ) is transitive and the set of minimal points of (Cx, T ) is dense in Cx,
and y is a transitive point of (Cx, T ).

Step 2. We claim that there are infinitely many distinct minimal subsets
of Cx. Assume to the contrary that there exist finitely many distinct minimal
subsets A1, . . . , An of Cx. Then

⋃n
i=1Ai = Cx since the almost periodic points

of (X, T ) are dense in Cx. It follows that Cx is minimal which is a contradiction.
Therefore, there are infinitely many distinct minimal subsets of Cx.

Step 3. Let {Mk}∞k=1 be a sequence of minimal subsets of Cx with Mi 6= Mj

for every i 6= j. Let δ > 0. For every k ∈ N, as Mk is a T -invariant closed set,
N(y,B(Mk, δ)) is thick in Zd+ by Lemma 4.5. It follows that N(U,B(Mk, δ))

is thick in Zd+ by Lemma 4.6.
Step 4. Let {Mk}∞k=1 be a sequence of minimal subsets of Cx with Mi 6=

Mj for every i 6= j. We are going to prove that N(U,B(M1, δ)) ∩ · · · ∩
N(U,B(Mk, δ)) 6= ∅ for any δ > 0 and k ≥ 2. In fact, since N(y, U) is
piecewise syndetic, there exists a finite subset F of Zd+ satisfying that for every

finite subset L of Zd+ there exists hL such that L+hL ⊂ F−1N(y, U). Then by

Step 3, for the finite subset F and each N(y,B(Mi, δ)), we can choose hi ∈ Zd+
such that F + hi ⊂ N(y,B(Mi, δ)) for each 1 ≤ i ≤ k. Take L∗ = {hi}ki=1.
Then there exists hL∗ such that L∗ + hL∗ ⊂ F−1N(y, U) which implies that



TWO NEW RECURRENT LEVELS AND CHAOTIC DYNAMICS 1253

for each i = 1, . . . , k, there exists fi ∈ F such that fi + hi + hL∗ ∈ N(y, U).
Therefore, for each 1 ≤ i ≤ k, we have

N(U,B(Mi, δ)) = (N(y,B(Mi, δ)))
−1N(y, U)

⊃
⋃
h∈F

(h+ hi)
−1N(y, U)

⊃
⋃
h∈F

{x ∈ Zd+ : (h+ hi)x = fi + hi + hL∗}

⊃ {x ∈ Zd+ : (fi + hi)x = fi + hi + hL∗} 3 hL∗ .

Thus, N(U,B(M1, δ)) ∩ · · · ∩N(U,B(Mk, δ)) 6= ∅.
Step 5. We claim that for each k ≥ 2, there exist x1 ∈ M1, . . . , xk ∈ Mk

such that Cx ⊂ L(x1, . . . , xk). Fix k ∈ N with k ≥ 2. For each n ∈ N, by Step
4, there exist y1,n, . . . , yk,n ∈ B(y, 1/n) and hn ∈ Zd+ such that

Thny1,n ∈ B(M1, 1/n), . . . , Thnyk,n ∈ B(Mk, 1/n).

Take

x1,n = Thny1,n, . . . , xk,n = Thnyk,n.

Without loss of generality, we may assume that

x1 = lim
n→∞

x1,n, . . . , xk = lim
n→∞

xk,n.

Then x1 ∈ M1, . . . , xk ∈ Mk and y ∈ L(x1, . . . , xk). As L(x1, . . . , xk) is closed
and T -invariant, then Cx ⊂ L(x1, . . . , xk).

Step 6. By Step 5, there exist xk,1, . . . , xk,k ∈ X such that xk,1 ∈ M1, . . .,
xk,k ∈Mk and Cx ⊂ L(xk,1, . . . , xk,k) for each k ≥ 2. Thus

{x2,1, x3,1, . . .} ⊂M1, {x2,2, x3,2, . . .} ⊂M2.

Without loss of generality, we assume that

lim
n→∞

xn,1 = x1 ∈M1, lim
n→∞

xn,2 = x2 ∈M2.

Continuing this construction, we obtain an infinite countable set K = {x1, x2,
. . .}. It follows that Cx ⊂ L(x1, . . . , xk) for each k ≥ 2 by Step 5 again. The
proof is ended. �
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