DOI QR코드

DOI QR Code

A Comparative Study on the Response Characteristics of the Semi-submersible Platform of a 15 MW Floating Offshore Wind Turbine System in Operational Conditions

15 MW급 부유식 해상풍력발전시스템 반잠수식 플랫폼의 운용 조건 중 응답 특성 비교 연구

  • 안현정 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 하윤진 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 박세완 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 김경환 (선박해양플랜트연구소, 해양에너지연구본부)
  • Received : 2022.07.29
  • Accepted : 2022.09.30
  • Published : 2022.12.30

Abstract

In this study, the response characteristics of two semi-submersible platforms with an IEA 15 MW reference wind turbine are compared. The nacelle acceleration, platform motion and generator power of FOWT applying a VolturnUS-S platform developed by the University of Maine and PentaSemi platform developed by the Korea Research Institute of Ships and Ocean Engineering are compared in operational conditions. Numerical simulations are performed based on the marine environmental conditions of the U.S east coast. In the FOWT to which the PentaSemi platform is applied, the nacelle acceleration and platform pitch angle are rather high, but the results of both platforms satisfied the design criteria at all operating wind speeds. The platform yaw angle of PentaSemi platform to which a yaw control catenary mooring system is applied is significantly smaller than the platform yaw angle of VolturnUS-S. Also, despite the relatively large nacelle acceleration and platform pitch angle, the generator power is higher on the PentaSemi platform. This means that the generator power dominates the control system rather than the nacelle and platform motion.

Keywords

Acknowledgement

본 연구는 선박해양플랜트연구소(KRISO) 주요 사업인 "일체형 해양그린수소 생산시스템 핵심기술 개발"의 지원으로 수행되었으며, 연구비 지원에 감사드립니다(PES4361).

References

  1. Baita-Saavedra, E., Cordal-Iglesias, D., Filgueira-Vizoso, A., Morato, A., Lamas-Galdo, I., Alvarez-Feal, C., ... and Castro-Santos, L. (2020). An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform. Applied Sciences, 10(11), 3678. 
  2. Yang, H. S., Alkhabbaz, A., Edirisinghe, D. S., Tongphong, W., and Lee, Y. H. (2022). FOWT Stability Study According to Number of Columns Considering Amount of Materials Used. Energies, 15(5), 1653. 
  3. Nilsson, A., and Englund, K. (2015). Multiple use of a floating offshore windenergy platform: A case study on the Hexicon concept. 
  4. Roddier, D., Cermelli, C., Aubault, A., and Weinstein, A. (2010). WindFloat: A floating foundation for offshore wind turbines. Journal of renewable and sustainable energy, 2(3), 033104. 
  5. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., ... and Viselli, A. (2020). IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-75698). National Renewable Energy Lab.(NREL), Golden, CO (United States). 
  6. Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., ... and Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-76773). National Renewable Energy Lab.(NREL), Golden, CO (United States); Univ. of Maine, Orono, ME (United States). 
  7. Silva de Souza, C. E., Berthelsen, P. A., Eliassen, L., Bachynski, E. E., Engebretsen, E., and Haslum, H. (2021). Definition of the INO WINDMOOR 12 MW base case floating wind turbine. 
  8. International Electrotechnical Commision. (2019). IEC TS 61400-3-2: 2019 Wind energy generation systems-Part 3-2: Design requirements for floating offshore wind turbines. 
  9. Stewart, G. M., Robertson, A., Jonkman, J., and Lackner, M. A. (2016). The creation of a comprehensive metocean data set for offshore wind turbine simulations. Wind Energy, 19(6), 1151-1159.