• Title/Summary/Keyword: 부유식 해상풍력발전시스템

Search Result 16, Processing Time 0.024 seconds

해상 풍력발전시스템을 위한 부유식 플랫폼 형식에 대한 기술보고

  • Jeong, Tae-Yeong;Mun, Seok-Jun;Im, Chae-Hwan
    • 기계와재료
    • /
    • v.22 no.2
    • /
    • pp.72-81
    • /
    • 2010
  • 본고에서는 유럽, 미국, 일본에서 활발하게 수행되고 있는 해상 풍력발전시스템을 위한 부유식 플랫폼에 대한 연구활동 및 기술내용에 대해서 논하고자 한다. 아직까지 부유식 해상 풍력발전 시스템이 실증되지는 않았지만 현재 실증을 추진하고 있으며, 앞으로 늦어도 10년 내에 부유식 해상풍력 발전단지의 조성이 가시화 될 것으로 예상하고 있다. 본고를 통하여 지금까지 부유식 해상풍력 발전시스템으로 제안된 여러 가지 형태의 개념설계안을 검토하였다. 육지 면적이 좁고 인구밀도가 높은 반면에 삼면이 바다로 둘러싸여 있는 우리나라에서도 부유식 해상 풍력발전 시스템 기술개발이 필요할 것으로 판단된다. 이를 위하여 우선적으로 풍력발전 시스템 자체의 성능을 예측하고 해석할 수 있는 프로그램의 개발과 해상에서 이를 지지하는 플랫폼의 거동예측 프로그램을 결합한 시스템적인 설계해석 프로그램의 자체개발 및 보유가 필요하다. 이를 위해서는 풍력발전 분야의 전문가들뿐만 아니라 플랫폼을 설계할 수 있는 해양공학 분야의 전문가들과의 융합연구가 요망된다.

  • PDF

Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System (10MW급 부유식 파력-해상풍력 연계형 발전 시스템의 다수 풍력터빈 배치 설계 및 성능 평가)

  • Park, Sewan;Kim, Kyong-Hwan;Lee, Kang-Su;Park, Yeon-Seok;Oh, Hyunseok;Shin, Hyungki;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • In this study, an arrangement design process for multiple wind turbines, placed on the 10MW class floating wave-offshore wind hybrid power generation system, was presented, and the aerodynamic performance was evaluated by using a computational fluid dynamics. An arrangement design, which produces a maximum power in the site wind field, was found by using a commercial program, WindPRO, based on a blade element momentum theory, then the effect of wake interference on the system between multiple wind turbines was studied and evaluated by using ANSYS CFX.

A review of the characteristics related to the platform design, transportation and installation of floating offshore wind turbine systems with a tension-leg platform (인장각형 부유식 해상풍력발전시스템의 하부 플랫폼 설계 및 운송·설치 관련 특성 고찰)

  • Hyeonjeong Ahn;Yoon-Jin Ha;Ji-Yong Park;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.29-42
    • /
    • 2023
  • In this study, research and empirical cases of floating offshore wind turbine systems with a tension-leg platform are investigated, and hydrodynamic and structural characteristics according to platform shapes and characteristics during transportation and installation are confirmed. Most platforms are composed of pontoons or corner columns, and these are mainly located below the waterline to minimize the impact of breaking waves and supplement the lack of buoyancy of the center column. These pontoons and corner columns are designed with a simple shape to reduce manufacturing and assembly costs, and some platforms additionally have reinforcements such as braces to improve structural strength. Most of the systems are assembled in the yard and then moved by tugboat and installed, and some platforms have been developed with a dedicated barge for simultaneous assembly, transportation and installation. In this study, we intend to secure the basic data necessary for the design, transportation, and installation procedures of floating offshore wind turbine systems with a tension-leg platform.

A Comparative Study on the Response Characteristics of the Semi-submersible Platform of a 15 MW Floating Offshore Wind Turbine System in Operational Conditions (15 MW급 부유식 해상풍력발전시스템 반잠수식 플랫폼의 운용 조건 중 응답 특성 비교 연구)

  • Hyeon-Jeong Ahn;Yoon-Jin Ha;Se-Wan Park;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.17-25
    • /
    • 2022
  • In this study, the response characteristics of two semi-submersible platforms with an IEA 15 MW reference wind turbine are compared. The nacelle acceleration, platform motion and generator power of FOWT applying a VolturnUS-S platform developed by the University of Maine and PentaSemi platform developed by the Korea Research Institute of Ships and Ocean Engineering are compared in operational conditions. Numerical simulations are performed based on the marine environmental conditions of the U.S east coast. In the FOWT to which the PentaSemi platform is applied, the nacelle acceleration and platform pitch angle are rather high, but the results of both platforms satisfied the design criteria at all operating wind speeds. The platform yaw angle of PentaSemi platform to which a yaw control catenary mooring system is applied is significantly smaller than the platform yaw angle of VolturnUS-S. Also, despite the relatively large nacelle acceleration and platform pitch angle, the generator power is higher on the PentaSemi platform. This means that the generator power dominates the control system rather than the nacelle and platform motion.

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.

Hybrid Generation Simulation Model Development Composed of Wave-Offshore and Wind (풍력 및 파력발전으로 구성된 복합발전 시뮬레이션 모델 개발)

  • Kim, Do-Hyun;Kim, Jae-Hyuk;Kim, Kyo-Min;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.115-116
    • /
    • 2015
  • 본 논문에서는 PSCAD/EMTDC 소프트웨어를 이용하여 3MVA 용량의 풍력발전기와 2.4MVA 용량의 파력발전기로 구성되어 있는 부유식 파력-해상풍력 연계형 발전시스템 모델을 모의 할 예정이다. 각각의 발전시스템은 발전기, 발전기 컨버터, 전력망 컨버터, 전력망으로 구성되어 있고 시뮬레이션 결과를 통해 각각의 풍력 및 파력발전기에서 전력망의 유효전력과 무효전력을 완전히 독립적으로 제어 할 수 있음에 대하여 살펴 볼 것이다.

  • PDF

Optimal arrangement of multiple wind turbines on an offshore wind-wave floating platform for reducing wake effects and maximizing annual energy production (다수 풍력터빈의 후류영향 최소화 및 연간발전량 극대화를 위한 부유식 파력-해상풍력 플랫폼 최적배치)

  • Kim, Jong-Hwa;Jung, Ji-Hyun;Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.209-215
    • /
    • 2017
  • A large floating offshore wind-wave hybrid power generation system with an area of 150 m2 and four 3 MW class wind turbine generators was installed at each column top. In accordance with the wind turbine arrangement, the wake generated from upstream turbines can adversely affect the power performance and load characteristics of downstream turbines. Therefore, an optimal arrangement design, obtained through a detailed flow analysis focusing on wake interference, is necessary. In this study, to determine the power characteristics and annual energy production (AEP) of individual wind turbines, transient computational fluid dynamics, considering wind velocity variation (8 m/s, 11.7 m/s, 19 m/s, and 25 m/s), was conducted under different platform conditions ($0^{\circ}$, $22.5^{\circ}$, and $45^{\circ}$). The AEP was calculated using a Rayleigh distribution, depending on the wind turbine arrangement. In addition, we suggested an optimal arrangement design to minimize wake losses, based on the AEP.

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation (파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계)

  • Kim, Kyong-Hwan;Lee, Kangsu;Sohn, Jung Min;Park, Sewan;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.

Nonlinear Structure-Soil Interaction Analysis for the Suction Bucket Foundation of Offshore Wind-Turbine (해상풍력 석션버켓 기초 구조-지반 상호작용 비선형 구조해석 및 실험결과 비교)

  • Jin, Jeongin;Kim, Donghyun;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.469-475
    • /
    • 2016
  • As we are facing the shortage of oil energy, studies on renewable energy, wind energy research has been naturally getting attention. Among wind energies, ocean wind energy is relatively abundant compared to land wind energy and therefore, is getting much attention in terms of its efficiency. However, the problem is the cost. Generally, the cost ratio of the supporting structure is over 25% of the total installation cost of a offshore wind turbine system. Thus, it is very important to reduce the total installation cost of the offshore wind turbine and develop accurate analysis methodology for various offshore wind turbine foundations. In this study, nonlinear structure-soil interaction analyses have been proposed and conducted for the typical suction bucket model of an offshore wind turbine foundation, and the results were compared with experimental test data for numerical validations.