DOI QR코드

DOI QR Code

Literature Review of Model Testing Techniques for Performance Evaluation of Floating Offshore Wind Turbine in Ocean Basin

부유식 해상풍력 시스템 성능평가를 위한 수조모형시험 기법고찰

  • 하윤진 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 안현정 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 박세완 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 박지용 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 정동우 (선박해양플랜트연구소, 수조운영실) ;
  • 정재상 (선박해양플랜트연구소, 수조운영실) ;
  • 원영욱 (선박해양플랜트연구소, 수조운영실) ;
  • 한익승 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 김경환 (선박해양플랜트연구소, 해양에너지연구본부) ;
  • 이종훈 (선박해양플랜트연구소, 해양플랜트연구본부)
  • Received : 2022.08.09
  • Accepted : 2022.10.21
  • Published : 2022.12.30

Abstract

Three similarities (i.e., geometrical similarity, kinematic similarity and dynamic similarity) between a prototype and model must be satisfied to perform an experiment for a floating offshore wind turbine (FOWT). For dynamic similarity, most of the model tests in ocean engineering basins are performed based on the Froude number, so the scale effect for the wind turbine of an FOWT occurs by different Reynolds numbers between the prototype and model. In this study, various model test techniques for overcoming the scale effect of the wind turbine part of the FOWT are investigated. Firstly, model test techniques using simple approaches are reviewed, and the advantages and disadvantages of the simple approaches are summarized. Secondly, the model test techniques in recent projects that apply improved approaches are introduced including advantages and disadvantages. Finally, new approaches applying digitalization are reviewed, and the characteristics of the new approaches are introduced.

본 연구에서는 부유식 해상풍력 성능평가 모형시험기법들을 소개하였으며, 이들의 특성 그리고 장단점들을 분석하였다. "Table 4"에 각 모형시험 기법의 기술과 특징들을 요약하여 나타내었다. 풍속증가법, 난류촉진법 그리고 등가추력 원판 방법들은 부유식 해상풍력 시스템에 대한 수조모형시험성능평가 시 터빈성능에 대한 모사의 한계가 있으나 간단히 적용이 가능하기 때문에 일부 시험 조건에서는 빠르게 적용해볼 수 있다. 블레이드 재설계법은 다소 진보된 모형시험 기법이나 큰 비용이 요구되며, 블레이드의 피치제어를 고려하기 어렵다는 단점이 있다. 실시간 복합모형시험 기법은 기술적인 난이도가 높으나, 난류 바람장을 포함한 다양한 풍속 조건들을 고려할 수 있고 기존의 수조모형시험 기법에서는 고려하기 어려운 터빈 블레이드 제어에 의한 하중도 모사가 가능하다. 그뿐만 아니라 실제 터빈에 대한 수치해석이 직접적으로 적용되기 때문에 부유식 해상풍력터빈의 긴급정지 또는 돌풍(Wind Gust) 조건들과 같은 특정 이벤트 조건에 대한 성능평가도 가능하다 [32].

Keywords

Acknowledgement

본 연구는 선박해양플랜트연구소(KRISO) 주요사업인 "일체형 해양그린수소 생산시스템 핵심기술 개발"의 지원으로 수행되었으며, 연구비 지원에 감사드립니다(PES4361).

References

  1. Martin, H.R., Kimball, R.W., Viselli, A.M., and Goupee, A.J., 2014, Methodology for Win/Wave Basin Testing of Floating Offshore Wind Turbines, Journal of Offshore Mechanics and Arctic Engineering, 136, 020905-1 
  2. Cermelli, C., Leroux, C., Diaz Dominguez, S., and Peiffer, A., 2018, "Experimental Measurements of WindFloat 1 Prototype Responses and Comparison with Numerical Model. 
  3. Browning, J., Jonkman, J., Robertson, A., and Goupee, A., 2014, "Calibration and Validation of a Spar-type Floating Offshore Wind Turbine Model using the Fast Dynamic Simulation Tool", J. Phys. Conf. 
  4. Castro, I.R., 2017, Desing of a 10MW Wind Turbine Rotor Blade for Testing of a Scaled-down Floating Offshore Support Structure, MSc. Thesis TUDelft 
  5. De Ridder, E.-J., Otto, W., Zondervan, G.-J., Huijs, F., and Vaz, G., 2014, "Development of a Scaled-down Floating Wind Turbine for Offshore Basin Testing", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 
  6. Fowler, M., Kimball, R., Thomas, D., and Goupee, A., 2013, "Design and Testing of Scale Model Wind Turbines for Used in Wind/Wave Basin Model Tests of Floating Offshore Wind Turbines", In:Proceedings of the International Conference on Offshroe Mechanics and Arctic Engineering - OMAE 
  7. McElman, S., Joop, A., De Ridder, E.-J., and Goupee, A., 2016, "Simulation and Development of a Wind-Wave Facility for Scale Testing of offshore Floating Wind Turbines", In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering -OMAE 
  8. Ward, J., Fowler, M., Viselli, A., Goupee, A., and Dagher, H., 2018, "Design and Validation of a Multi-scale Model Floating Offshore Test Wind Turbine", In: ASME 2018 1 st International Offshore Wind Technical Conference, IOWTC 
  9. Armesto, J.A., Jurado, A., Guanche, R., Counago, B., Urbano, J., and Serna, J., 2018, "Telwind. Numerical Analysis of a Floating Wind Turbine Supported by a Two Bodies Platform", In: Preceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 
  10. Azcona, J., Bourchotrouch, F., Conzalez, M., Garciandia, J., Munduate, X., Kelberlau, F., and Nygaard, T., 2014, "Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines using a Ducted Fan", J. Phys. Conf. 
  11. Bachynski, E., Thys, M., Sauder, T., Chabaud, V., and Saether, L., 2016, "Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine. Part-II: Experimental Results", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 
  12. Defor, A., Heurtier, J., Cunff, C., Antonutti, R., Weyne, P., and Marseille : 16eme Journees de I'Hydrodynamique. 
  13. Demond, C., Hinrichs, J.-C., and Murphy, J., 2019, Uncertainty in the Physical Testing of Floating Wind Energy Platforms' Accuracy versus Precision, Energies. 
  14. Gueydon, S., Lindeboom, R., VanKampen, W., and De Ridder, E-J., 2018, "Comparison of Two Wind turbine Loading Emulation Techniques Based on Tests of a TLP-FOWT in Combined Wind, Waves and Current", In: ASME 2018 1st International Offshore Wind Technical Conference, IOWTC 
  15. Gueydon, S. and Bayati, I., 2020, Report of a New Hybrid SiL System for Offshore Basin Tests of Floating Offshore Wind Turbines, MARIN ARD - Internal R&D Project 
  16. Hall, M. and Goupee, A., 2018, Validation of a Hybrid Modeling Approach to Floating Wind Turbine Basin Testing, Wind Energy. 
  17. Kvittem, M., Berthelsen, P., Eliassen, L., and Thys, M., 2018, "Calibration of Hydrodynamic Coefficients for a Semi-Submersible 10MW Wind Turbine", In; Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 
  18. Oguz, E., Clelland, D., Day, A., Incecik, A., Lopez, J., Sanchez, G., and Almeria, G., 2018, Experimental and Numeircal Analysis of a TLP Floating Offshore Wind Turbine, Ocean Engineering, 147, 591-605 
  19. Cummins, W.E., 1962, The Impulse Response Function and Ship Motions, Schiffstechnik, 47, 101-109 
  20. Vittori, F., Bouchotrouch, F., Lemmer, F., and Azcona, J., 2018, "Hybrid Scaled Testing of a 5MW Floating Wind Turbine using the SiL Method Compared with Numerical Models", In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 
  21. www.youtube.com/watch?v=iMwcAstXyLM
  22. aviation.stackexchange.com/questions/9682/where-can-i-find-data-tables-for-lift-and-drag-coefficients-of-airliners 
  23. Azcona, J., Bouchotrouch, F., and Vittori, F., 2019, Low-frequency Dynamics of a Floating Wind Turbine in Wave Tank-scaled Experiments with SiL Hybrid Method, Wind Energy, 22, 1402-1413. 
  24. https://en.wikipedia.org/wiki/Law_of_the_wall 
  25. DNVGL-ST-0119 Floating Wind Turbine Structures 
  26. DNV-RP-0286 Coupled Analysis of Floating Wind Turbines 
  27. ITTC-Recommended Procedures and Guidelines, 7.5-02-07-03.8 
  28. LIFES50+ Project Report - D3.2 Wind Turbine Scaled Model
  29. https://docplayer.net/4931341-Depth-independentsolution-for-offshore-wind-the-windfloat.html 
  30. DeepCwind Consortium National Research Program Final Project Report Vol. I 
  31. http://www.gicon-sof.de/en/sof-chronik.html 
  32. Ha, Y.J., Roh, C., Park, S.W., Ahn, H.J., Jung, D.W., Park, B.W., and Kim, K.H., 2021 "Development of Real-Time Hybrid Model Testing Technique for Performance Evaluation of a Floating Offshore Wind Turbine", The 2021 Fall Conference of Korea Wind Energy Association, Gwangju, Korea, 11/10~11/12 (in Korean). 
  33. Chabaud, V., Eliassen, L., Thys, M., and Sauder, T., 2018, Multiple-Degree-of-Freedom Actuation of Rotor Loads in Model Testing of Floating Wind Turbines using Calbe-Driven Parallel Robots, Journal of Physics Conference Series, 1104(1), 012021 
  34. Ha, Y.J., Park, S.W., Park, J.Y., Ahn, H.J., Kim, D.H., and Kim, K.H., 2022 "An Experimental Evaluation for Performance of a 15MW Class Floating Offshore Wind TUrbine System using Real-Time Hybrid Model Testing Technique", The 2022 Spring Conference of Korea Wind Energy Association, Jeju, Korea, 6/20~6/22 (in Korean).