DOI QR코드

DOI QR Code

Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2

  • Lee, Su Jin (Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Yu-Jin (Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Ahn, Dae-Gyun (Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology)
  • Received : 2022.06.30
  • Accepted : 2022.08.20
  • Published : 2022.09.28

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARS-CoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, Information and Communication Technology, Korea (NRF-2021M3E5E3080540) and the Korea Research Institute of Chemical Technology (Grant No. KKM2232-30). Y.J.K is supported by 'National Research Council of Science & Technology (NST)' - 'Korea Research Institute of Chemical Technology(KRICT)' Postdoctoral Fellowship Program for Young Scientists at KRICT in South Korea.

References

  1. WHO Coronavirus (COVID-19) Dashboard. Available from https://covid19.who.int/. Accessed 24 June, 2020.
  2. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, et al. 2020. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183: 739-751.e8. https://doi.org/10.1016/j.cell.2020.09.032
  3. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19: 409-424. https://doi.org/10.1038/s41579-021-00573-0
  4. Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, et al. 2015. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J. Virol. 89: 7202-7213. https://doi.org/10.1128/JVI.00854-15
  5. Krempl C, Schultze B, Herrler G. 1995. Analysis of cellular receptors for human coronavirus OC43. Adv. Exp. Med. Biol. 380: 371-374. https://doi.org/10.1007/978-1-4615-1899-0_60
  6. Schultze B, Herrler G. 1993. Recognition of N-acetyl-9-O-acetylneuraminic acid by bovine coronavirus and hemagglutinating encephalomyelitis virus. Adv. Exp. Med. Biol. 342: 299-304. https://doi.org/10.1007/978-1-4615-2996-5_46
  7. Maginnis MS. 2018. Virus-receptor interactions: The key to cellular invasion. J. Mol. Biol. 430: 2590-2611. https://doi.org/10.1016/j.jmb.2018.06.024
  8. Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, et al. 2021. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci. 28: 9. https://doi.org/10.1186/s12929-020-00703-5
  9. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117: 17-37. https://doi.org/10.1016/j.virusres.2006.01.017
  10. Yoshimoto FK. 2020. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39: 198-216. https://doi.org/10.1007/s10930-020-09901-4
  11. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. 2020. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9: 186. https://doi.org/10.3390/pathogens9030186
  12. Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7: 439-450. https://doi.org/10.1038/nrmicro2147
  13. Forni D, Cagliani R, Clerici M, Sironi M. 2017. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25: 35-48. https://doi.org/10.1016/j.tim.2016.09.001
  14. Cunningham CH, Stuart HO. 1947. Cultivation of the virus of infectious bronchitis of chickens in embryonated chicken eggs. Am. J. Vet. Res. 8: 209-212.
  15. Cheever FS, Daniels JB. 1949. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. J. Exp. Med. 90: 181-210. https://doi.org/10.1084/jem.90.3.181
  16. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA 57: 933-940. https://doi.org/10.1073/pnas.57.4.933
  17. Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121: 190-193. https://doi.org/10.3181/00379727-121-30734
  18. Xu RH, He JF, Evans MR, Peng GW, Field HE, Yu DW, et al. 2004. Epidemiologic clues to SARS origin in China. Emerg. Infect. Dis. 10: 1030-1037. https://doi.org/10.3201/eid1006.030852
  19. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367: 1814-1820. https://doi.org/10.1056/NEJMoa1211721
  20. Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. 2017. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 91: e01953-16.
  21. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581: 221-224. https://doi.org/10.1038/s41586-020-2179-y
  22. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444-1448. https://doi.org/10.1126/science.abb2762
  23. Wu K, Li W, Peng G, Li F. 2009. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. U SA 106: 19970-19974. https://doi.org/10.1073/pnas.0908837106
  24. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24: 1634-1643. https://doi.org/10.1038/sj.emboj.7600640
  25. Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. 2012. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog. 8: e1002859. https://doi.org/10.1371/journal.ppat.1002859
  26. Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, et al. 1992. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357: 417-420. https://doi.org/10.1038/357417a0
  27. Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV. 2003. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J. Virol. 77: 2530-2538. https://doi.org/10.1128/JVI.77.4.2530-2538.2003
  28. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251-254. https://doi.org/10.1038/nature12005
  29. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500: 227-231. https://doi.org/10.1038/nature12328
  30. Jackson CB, Farzan M, Chen B, Choe H. 2022. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23: 3-20. https://doi.org/10.1038/s41580-021-00418-x
  31. Hoffmann M, Hofmann-Winkler H, Pohlmann S. 2018. Priming time: How cellular proteases arm coronavirus spike proteins, pp. 71-98. In Bottcher-Friebertshauser E, Garten W, Klenk HD (eds.), Activation of Viruses by Host Proteases, Ed. Springer International Publishing, Cham
  32. Millet JK, Whittaker GR. 2018. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 517: 3-8. https://doi.org/10.1016/j.virol.2017.12.015
  33. Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA 111: 15214-15219. https://doi.org/10.1073/pnas.1407087111
  34. Hoffmann M, Kleine-Weber H, Pohlmann S. 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78: 779-784 e775. https://doi.org/10.1016/j.molcel.2020.04.022
  35. Takeda M. 2022. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol. Immunol. 66: 15-23. https://doi.org/10.1111/1348-0421.12945
  36. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85: 873-882. https://doi.org/10.1128/JVI.02062-10
  37. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84: 12658-12664. https://doi.org/10.1128/JVI.01542-10
  38. Shirato K, Kawase M, Matsuyama S. 2013. Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 87: 12552-12561. https://doi.org/10.1128/JVI.01890-13
  39. Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, et al. 2019. TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. 93: e00649-19.
  40. Zhao MM, Zhu Y, Zhang L, Zhong G, Tai L, Liu S, et al. 2022. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discov. 8: 53.
  41. Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. 2021. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 17: e1009212. https://doi.org/10.1371/journal.ppat.1009212
  42. Bayati A, Kumar R, Francis V, McPherson PS. 2021. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296: 100306. https://doi.org/10.1016/j.jbc.2021.100306
  43. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-280 e278. https://doi.org/10.1016/j.cell.2020.02.052
  44. WHO. 2022. Tracking SARS-CoV-2 variants. Available from https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. Accessed 03 February, 2022.
  45. Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. 2022. Mutations and evolution of the SARS-CoV-2 spike protein. Viruses 14: 640. https://doi.org/10.3390/v14030640
  46. McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. 2021. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184: 2332-2347.e16. https://doi.org/10.1016/j.cell.2021.03.028
  47. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, et al. 2021. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science 373: eabi6226. https://doi.org/10.1126/science.abi6226
  48. Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C. 2020. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16: e9610. https://doi.org/10.15252/msb.20209610
  49. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181: 1016-1035.e.19. https://doi.org/10.1016/j.cell.2020.04.035
  50. Liu J, Li Y, Liu Q, Yao Q, Wang X, Zhang H, et al. 2021. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov. 7: 17.
  51. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. 2020. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158: 1831-1833.e3. https://doi.org/10.1053/j.gastro.2020.02.055
  52. Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z, et al. 2020. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg. Microbes Infect. 9: 991-993. https://doi.org/10.1080/22221751.2020.1760144
  53. Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. 2020. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 46: 1339-1348. https://doi.org/10.1007/s00134-020-06153-9
  54. Salamanna F, Maglio M, Landini MP, Fini M. 2020. Body localization of ACE-2: On the trail of the Keyhole of SARS-CoV-2. Front. Med (Lausanne). 7: 594495. https://doi.org/10.3389/fmed.2020.594495
  55. Eslami N, Aghbash PS, Shamekh A, Entezari-Maleki T, Nahand JS, Sales AJ, et al. 2022. SARS-CoV-2: receptor and co-receptor tropism probability. Curr. Microbiol. 79: 133. https://doi.org/10.1007/s00284-022-02807-7
  56. van der Velden VH, Wierenga-Wolf AF, Adriaansen-Soeting PW, Overbeek SE, Moller GM, Hoogsteden HC, et al. 1998. Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus. Clin. Exp. Allergy 28: 110-120. https://doi.org/10.1046/j.1365-2222.1998.028s5110.x
  57. Kindler E, Jonsdottir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, et al. 2013. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. mBio 4: e00611-00612.
  58. Lambeir AM, Durinx C, Scharpe S, De Meester I. 2003. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 40: 209-294. https://doi.org/10.1080/713609354
  59. Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, et al. 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA 111: E3900-3909.
  60. te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ. 2010. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic. Acids Res. 38: 203-214. https://doi.org/10.1093/nar/gkp904
  61. Ahn DG, Choi JK, Taylor DR, Oh JW. 2012. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch. Virol. 157: 2095-2104. https://doi.org/10.1007/s00705-012-1404-x
  62. Kirchdoerfer RN, Ward AB. 2019. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 10: 2342. https://doi.org/10.1038/s41467-019-10280-3
  63. Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. USA 109: 9372-9377. https://doi.org/10.1073/pnas.1201130109
  64. Bouvet M, Lugari A, Posthuma CC, Zevenhoven JC, Bernard S, Betzi S, et al. 2014. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J. Biol. Chem. 289: 25783-25796. https://doi.org/10.1074/jbc.M114.577353
  65. Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368: 1499-1504. https://doi.org/10.1126/science.abc1560
  66. Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. 2020. Structure of replicating SARS-CoV-2 polymerase. Nature 584: 154-156. https://doi.org/10.1038/s41586-020-2368-8
  67. Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet MJ, et al. 2021. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc. Natl. Acad. Sci. USA 118: e2021946118. https://doi.org/10.1073/pnas.2021946118
  68. Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM, Jr., Krebs C, et al. 2021. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 373: 236-241. https://doi.org/10.1126/science.abi5224
  69. Riccio AA, Sullivan ED, Copeland WC. 2022. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. J. Biol. Chem. 298: 101518. https://doi.org/10.1016/j.jbc.2021.101518
  70. Czarna A, Plewka J, Kresik L, Matsuda A, Karim A, Robinson C, et al. 2022. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Structure 30: 1050-5041.e2. https://doi.org/10.1016/j.str.2022.04.014
  71. Moeller NH, Shi K, Demir O, Belica C, Banerjee S, Yin L, et al. 2022. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. 119: e2106379119.
  72. Rona G, Zeke A, Miwatani-Minter B, de Vries M, Kaur R, Schinlever A, et al. 2022. The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death Differ. 29: 285-292. https://doi.org/10.1038/s41418-021-00900-1
  73. Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J. Virol. 81: 12135-12144. https://doi.org/10.1128/JVI.01296-07
  74. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, et al. 2010. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6: e1000896. https://doi.org/10.1371/journal.ppat.1000896
  75. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. 2020. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J. Virol. 94: e01246-20.
  76. Brierley I, Digard P, Inglis SC. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57: 537-547. https://doi.org/10.1016/0092-8674(89)90124-4
  77. Plant EP, Dinman JD. 2008. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Front. Biosci. 13: 4873-4881. https://doi.org/10.2741/3046
  78. Plant EP, Sims AC, Baric RS, Dinman JD, Taylor DR. 2013. Altering SARS coronavirus frameshift efficiency affects genomic and subgenomic RNA production. Viruses 5: 279-294. https://doi.org/10.3390/v5010279
  79. Kelly JA, Olson AN, Neupane K, Munshi S, San Emeterio J, Pollack L, et al. 2020. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J. Biol. Chem. 295: 10741-10748. https://doi.org/10.1074/jbc.ac120.013449
  80. Ahn DG, Yoon GY, Lee S, Ku KB, Kim C, Kim KD, et al. 2021. A Novel Frameshifting inhibitor having antiviral activity against zoonotic coronaviruses. Viruses 13: 1639. https://doi.org/10.3390/v13081639
  81. Plant EP, Perez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD. 2005. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol. 3: e172. https://doi.org/10.1371/journal.pbio.0030172
  82. Irigoyen N, Firth AE, Jones JD, Chung BY, Siddell SG, Brierley I. 2016. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog. 12: e1005473. https://doi.org/10.1371/journal.ppat.1005473
  83. Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, et al. 2020. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. 48: 12415-12435. https://doi.org/10.1093/nar/gkaa1013
  84. Roman C, Lewicka A, Koirala D, Li NS, Piccirilli JA. 2021. The SARS-CoV-2 programmed -1 ribosomal frameshifting element crystal structure solved to 2.09 A using chaperone-assisted RNA crystallography. ACS Chem. Biol. 16: 1469-1481. https://doi.org/10.1021/acschembio.1c00324
  85. Zhang K, Zheludev IN, Hagey RJ, Haslecker R, Hou YJ, Kretsch R, et al. 2021. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28: 747-754. https://doi.org/10.1038/s41594-021-00653-y
  86. Haniff HS, Tong Y, Liu X, Chen JL, Suresh BM, Andrews RJ, et al. 2020. Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent. Sci. 6: 1713-1721. https://doi.org/10.1021/acscentsci.0c00984
  87. Munshi S, Neupane K, Ileperuma SM, Halma MTJ, Kelly JA, Halpern CF, et al. 2022. Identifying inhibitors of -1 programmed ribosomal frameshifting in a broad spectrum of coronaviruses. Viruse 14: 177. https://doi.org/10.3390/v14020177
  88. Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, et al. 2021. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Proc. Natl. Acad. Sci. USA 118: e2023051118. https://doi.org/10.1073/pnas.2023051118
  89. Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, et al. 2020. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 61: 103104. https://doi.org/10.1016/j.ebiom.2020.103104
  90. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727-733. https://doi.org/10.1056/nejmoa2001017
  91. Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, et al. 2021. Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 40: e107405. https://doi.org/10.15252/embj.2020107405
  92. Zhu N, Wang W, Liu Z, Liang C, Wang W, Ye F, et al. 2020. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat. Commun. 11: 3910. https://doi.org/10.1038/s41467-020-17796-z
  93. Wolff G, Limpens R, Zevenhoven-Dobbe JC, Laugks U, Zheng S, de Jong AWM, et al. 2020. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369: 1395-1398. https://doi.org/10.1126/science.abd3629
  94. Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, et al. 2020. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell. Mol. Immunol. 17: 881-883. https://doi.org/10.1038/s41423-020-0485-9
  95. Freundt EC, Yu L, Goldsmith CS, Welsh S, Cheng A, Yount B, et al. 2010. The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J. Virol. 84: 1097-1109. https://doi.org/10.1128/JVI.01662-09
  96. Law PTW, Wong CH, Au TCC, Chuck CP, Kong SK, Chan PKS, et al. 2005. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 86: 1921-1930. https://doi.org/10.1099/vir.0.80813-0
  97. Li F, Li J, Wang PH, Yang N, Huang J, Ou J, et al. 2021. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim. Biophys. Acta Mol. Basis Dis. 1867: 166260. https://doi.org/10.1016/j.bbadis.2021.166260
  98. Rashid F, Dzakah EE, Wang H, Tang S. 2021. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta. Virus Res. 296: 198350. https://doi.org/10.1016/j.virusres.2021.198350
  99. Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, et al. 2021. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front. Microbiol. 12: 780768.
  100. Meyer K, Patra T, Vijayamahantesh, Ray R. 2021. SARS-CoV-2 spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells. J. Virol. 95: e0079421. https://doi.org/10.1128/JVI.00794-21
  101. Evangelou K, Veroutis D, Paschalaki K, Foukas PG, Lagopati N, Dimitriou M, et al. 2022. Pulmonary infection by SARS-CoV-2 induces senescence accompanied by an inflammatory phenotype in severe COVID-19: possible implications for viral mutagenesis. Eur. Respir. J. 60: 2102951. https://doi.org/10.1183/13993003.02951-2021
  102. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. 2020. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 31: 1068-1077. e1063. https://doi.org/10.1016/j.cmet.2020.04.021
  103. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054-1062. https://doi.org/10.1016/s0140-6736(20)30566-3
  104. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. 2020. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 395: 1763-1770. https://doi.org/10.1016/s0140-6736(20)31189-2
  105. Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, et al. 2021. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 33: 1577-1591.e7. https://doi.org/10.1016/j.cmet.2021.05.015
  106. Fung TS, Liu DX. 2014. Coronavirus infection, ER stress, apoptosis and innate immunity. Front. Microbiol. 5: 296. https://doi.org/10.3389/fmicb.2014.00296
  107. Bull JJ, Lauring AS. 2014. Theory and empiricism in virulence evolution. PLoS Pathog. 10: e1004387. https://doi.org/10.1371/journal.ppat.1004387
  108. Xia S, Liu Q, Wang Q, Sun Z, Su S, Du L, et al. 2014. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194: 200-210. https://doi.org/10.1016/j.virusres.2014.10.007
  109. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. 2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 10: 766-788. https://doi.org/10.1016/j.apsb.2020.02.008
  110. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 102: 11876-11881. https://doi.org/10.1073/pnas.0505577102
  111. Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. 2012. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 86: 6537-6545. https://doi.org/10.1128/JVI.00094-12
  112. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181: 281-292 e286. https://doi.org/10.1016/j.cell.2020.02.058
  113. Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, et al. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. USA 111: 12516-12521. https://doi.org/10.1073/pnas.1405889111
  114. Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4: 1011-1033. https://doi.org/10.3390/v4061011
  115. Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3: 237-261. https://doi.org/10.1146/annurev-virology-110615-042301
  116. Schoeman D, Fielding BC. 2019. Coronavirus envelope protein: current knowledge. Virol. J. 16: 69. https://doi.org/10.1186/s12985-019-1182-0
  117. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Alvarez E, Oliveros JC, et al. 2011. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog. 7: e1002315. https://doi.org/10.1371/journal.ppat.1002315
  118. Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Fernandez-Delgado R, et al. 2014. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 10: e1004077. https://doi.org/10.1371/journal.ppat.1004077
  119. Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et al. 2006. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. USA103: 12885-12890.
  120. Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CT, et al. 2008. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol. 82: 4471-4479. https://doi.org/10.1128/JVI.02472-07
  121. Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K, et al. 2021. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J. Biol. Chem. 297: 101041. https://doi.org/10.1016/j.jbc.2021.101041
  122. Forni D, Cagliani R, Mozzi A, Pozzoli U, Al-Daghri N, Clerici M, et al. 2016. Extensive positive selection erives the evolution of nonstructural proteins in lineage C betacoronaviruses. J. Virol. 90: 3627-3639. https://doi.org/10.1128/JVI.02988-15
  123. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587: 657-662. https://doi.org/10.1038/s41586-020-2601-5
  124. Au-Yeung N, Horvath CM. 2018. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression. Cytokine Growth Factor Rev. 44: 11-17. https://doi.org/10.1016/j.cytogfr.2018.10.003
  125. Huangfu WC, Fuchs SY. 2010. Ubiquitination-dependent regulation of signaling receptors in cancer. Genes Cancer 1: 725-734. https://doi.org/10.1177/1947601910382901
  126. Akutsu M, Ye Y, Virdee S, Chin JW, Komander D. 2011. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl. Acad. Sci. USA 108: 2228-2233. https://doi.org/10.1073/pnas.1015287108
  127. Andrew AJ, Miyagi E, Kao S, Strebel K. 2009. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 6: 80. https://doi.org/10.1186/1742-4690-6-80
  128. Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkataraman T, et al. 2015. Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J. Virol. 89: 11820-11833. https://doi.org/10.1128/JVI.02274-15
  129. Thorne LG, Reuschl AK, Zuliani-Alvarez L, Whelan MVX, Turner J, Noursadeghi M, et al. 2021. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J. 40: e107826. https://doi.org/10.15252/embj.2021107826
  130. Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G, et al. 2021. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. Microorganisms 9: 1820. https://doi.org/10.3390/microorganisms9091820
  131. Xagorari A, Chlichlia K. 2008. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol. J. 2: 49-59. https://doi.org/10.2174/1874285800802010049
  132. Scheuplein VA, Seifried J, Malczyk AH, Miller L, Hocker L, Vergara-Alert J, et al. 2015. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J. Virol. 89: 3859-3869. https://doi.org/10.1128/JVI.03607-14
  133. Cervantes-Barragan L, Zust R, Weber F, Spiegel M, Lang KS, Akira S, et al. 2007. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109: 1131-1137. https://doi.org/10.1182/blood-2006-05-023770
  134. Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. 2021. Nucleic acid-sensing pathways during SARS-CoV-2 infection: Expectations versus reality. J. Inflamm. Res. 14: 199-216. https://doi.org/10.2147/JIR.S277716
  135. Zhao Z, Wei Y, Tao C. 2021. An enlightening role for cytokine storm in coronavirus infection. Clin. Immunol. 222: 108615. https://doi.org/10.1016/j.clim.2020.108615
  136. Wang J, Jiang M, Chen X, Montaner LJ. 2020. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc Biol. 108: 17-41. https://doi.org/10.1002/JLB.3COVR0520-272R
  137. Beyer DK, Forero A. 2022. Mechanisms of antiviral immune evasion of SARS-CoV-2. J. Mol. Biol. 434: 167265. https://doi.org/10.1016/j.jmb.2021.167265
  138. Park A, Iwasaki A. 2020. Type I and Type III interferons - Induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 27: 870-878. https://doi.org/10.1016/j.chom.2020.05.008
  139. Oudshoorn D, Rijs K, Limpens R, Groen K, Koster AJ, Snijder EJ, et al. 2017. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. mBio 8: e01658-17.
  140. Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. 2013. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio 4: e00524-13.
  141. Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, et al. 2020. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11: 5885. https://doi.org/10.1038/s41467-020-19619-7
  142. Li JY, Zhou ZJ, Wang Q, He QN, Zhao MY, Qiu Y, et al. 2021. Innate immunity evasion strategies of highly pathogenic coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2. Front. Microbiol. 12: 770656. https://doi.org/10.3389/fmicb.2021.770656
  143. Chang LJ, Chen TH. 2021. NSP16 2'-O-MTase in coronavirus pathogenesis: Possible prevention and treatments strategies. Viruses 13: 538. https://doi.org/10.3390/v13040538
  144. Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, et al. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. USA 106: 3484-3489. https://doi.org/10.1073/pnas.0808790106
  145. Viswanathan T, Arya S, Chan SH, Qi S, Dai N, Misra A, et al. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 11: 3718. https://doi.org/10.1038/s41467-020-17496-8
  146. Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7: e43031. https://doi.org/10.1371/journal.pone.0043031
  147. Nakagawa K, Narayanan K, Wada M, Makino S. 2018. Inhibition of stress granule formation by middle east respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. J. Virol. 92: e00902-18.
  148. Gao B, Gong X, Fang S, Weng W, Wang H, Chu H, et al. 2021. Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathog. 17: e1008690. https://doi.org/10.1371/journal.ppat.1008690
  149. Zheng ZQ, Wang SY, Xu ZS, Fu YZ, Wang YY. 2021. SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discov. 7: 38.
  150. Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, et al. 2020. SARS-CoV-2 Nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-beta production. Viruses 13: 47. https://doi.org/10.3390/v13010047
  151. Michalska A, Blaszczyk K, Wesoly J, Bluyssen HAR. 2018. A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front. Immunol. 9: 1135. https://doi.org/10.3389/fimmu.2018.01135
  152. Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, et al. 2014. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J. Gen. Virol. 95: 614-626. https://doi.org/10.1099/vir.0.059014-0
  153. Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, et al. 2007. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282: 32208-32221. https://doi.org/10.1074/jbc.M704870200
  154. Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. 2009. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol. 83: 6689-6705. https://doi.org/10.1128/JVI.02220-08
  155. Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, et al. 2020. Evasion of Type I interferon by SARS-CoV-2. Cell Rep. 33: 108234. https://doi.org/10.1016/j.celrep.2020.108234
  156. Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, et al. 2015. Middle east respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5: 17554. https://doi.org/10.1038/srep17554
  157. Gao X, Zhu K, Qin B, Olieric V, Wang M, Cui S. 2021. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nat. Commun. 12: 2843. https://doi.org/10.1038/s41467-021-23118-8
  158. Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S, et al. 2021. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep. 35: 109126. https://doi.org/10.1016/j.celrep.2021.109126
  159. Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S. 2009. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342. https://doi.org/10.1371/journal.pone.0008342
  160. Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, et al. 2020. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl. Acad. Sci. USA 117: 28344-28354. https://doi.org/10.1073/pnas.2016650117
  161. Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81: 548-557. https://doi.org/10.1128/JVI.01782-06
  162. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. 2021. Post-acute COVID-19 syndrome. Nat. Med. 27: 601-615. https://doi.org/10.1038/s41591-021-01283-z
  163. Brodin P, Casari G, Townsend L, O'Farrelly C, Tancevski I, Loffler-Ragg J, et al. 2022. Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nat. Med. 28: 879-882. https://doi.org/10.1038/s41591-022-01766-7
  164. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. 2021. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2: e13-e22. https://doi.org/10.1016/S2666-5247(20)30172-5
  165. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. 2020. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 382: 2081-2090. https://doi.org/10.1056/nejmoa2008457
  166. Park WB, Poon LLM, Choi SJ, Choe PG, Song KH, Bang JH, et al. 2018. Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection. Int. J. Infect. Dis. 72: 8-10. https://doi.org/10.1016/j.ijid.2018.05.003
  167. Oh MD, Park WB, Choe PG, Choi SJ, Kim JI, Chae J, et al. 2016. Viral load kinetics of MERS coronavirus infection. N. Engl. J. Med. 375: 1303-1305. https://doi.org/10.1056/NEJMc1511695
  168. Xu D, Zhang Z, Jin L, Chu F, Mao Y, Wang H, et al. 2005. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. Eur. J. Clin. Microbiol. Infect. Dis. 24: 165-171. https://doi.org/10.1007/s10096-005-1299-5
  169. Liu W, Tang F, Fontanet A, Zhan L, Zhao QM, Zhang PH, et al. 2004. Long-term SARS coronavirus excretion from patient cohort, China. Emerg. Infect. Dis. 10: 1841-1843. https://doi.org/10.3201/eid1010.040297
  170. Christensen BB, Azar MM, Turbett SE. 2022. Laboratory diagnosis for SARS-CoV-2 infection. Infect. Dis. Clin. North Am. 36: 327-347. https://doi.org/10.1016/j.idc.2022.02.002
  171. Dalia Arostegui KC, Steven Schwarz, Katherine Vaidy, Simon Rabinowitz, Thomas Wallach. 2022. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection. JPGN Rep. 3: e152. https://doi.org/10.1097/PG9.0000000000000152
  172. Wang X, Zhou Y, Jiang N, Zhou Q, Ma WL. 2020. Persistence of intestinal SARS-CoV-2 infection in patients with COVID-19 leads to re-admission after pneumonia resolved. Int. J. Infect. Dis. 95: 433-435. https://doi.org/10.1016/j.ijid.2020.04.063
  173. Chan PK, To KF, Lo AW, Cheung JL, Chu I, Au FW, et al. 2004. Persistent infection of SARS coronavirus in colonic cells in vitro. J. Med. Virol. 74: 1-7. https://doi.org/10.1002/jmv.20138
  174. Pacciarini F, Ghezzi S, Canducci F, Sims A, Sampaolo M, Ferioli E, et al. 2008. Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein. J. Virol. 82: 5137-5144. https://doi.org/10.1128/JVI.00096-08
  175. Mizutani T, Fukushi S, Ishii K, Sasaki Y, Kenri T, Saijo M, et al. 2006. Mechanisms of establishment of persistent SARS-CoV-infected cells. Biochem. Biophys. Res. Commun. 347: 261-265. https://doi.org/10.1016/j.bbrc.2006.06.086
  176. Lee S, Yoon GY, Myoung J, Kim SJ, Ahn DG. 2020. Robust and persistent SARS-CoV-2 infection in the human intestinal brush border expressing cells. Emerg. Microbes Infect. 9: 2169-2179. https://doi.org/10.1080/22221751.2020.1827985
  177. Kanwugu ON, Adadi P. 2021. HIV/SARS-CoV-2 coinfection: A global perspective. J. Med. Virol. 93: 726-732. https://doi.org/10.1002/jmv.26321
  178. Geretti AM, Stockdale AJ, Kelly SH, Cevik M, Collins S, Waters L, et al. 2021. Outcomes of coronavirus disease 2019 (COVID-19) related hospitalization among people with human immunodeficiency virus (HIV) in the ISARIC World Health Organization (WHO) clinical characterization protocol (UK): A prospective observational study. Clin. Infect. Dis. 73: e2095-e2106. https://doi.org/10.1093/cid/ciaa1605
  179. Davies MA. 2020. HIV and risk of COVID-19 death: a population cohort study from the Western cape province, South Africa. medRxiv. doi: 10.1101/2020.07.02.20145185. Preprint.
  180. Swets MC, Russell CD, Harrison EM, Docherty AB, Lone N, Girvan M, et al. 2022. SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet 399: 1463-1464. https://doi.org/10.1016/S0140-6736(22)00383-X
  181. F Karim MM, BI Gosnell, S Cele, J Giandhari, S Pillay, H Tegally, et al. 2021. Persistent SARS-CoV-2 infection and intra-host evolution in association with advanced HIV infection. medRxiv. doi: https://doi.org/10.1101/2021.06.03.21258228.
  182. Qureshi AI, Baskett WI, Huang W, Lobanova I, Hasan Naqvi S, Shyu CR. 2022. Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients undergoing serial laboratory testing. Clin. Infect. Dis. 74: 294-300. https://doi.org/10.1093/cid/ciab345
  183. Nguyen NN, Houhamdi L, Hoang VT, Delerce J, Delorme L, Colson P, et al. 2022. SARS-CoV-2 reinfection and COVID-19 severity. Emerg. Microbes Infect. 11: 894-901. https://doi.org/10.1080/22221751.2022.2052358
  184. Baang JH, Smith C, Mirabelli C, Valesano AL, Manthei DM, Bachman MA, et al. 2021. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect. Dis. 223: 23-27. https://doi.org/10.1093/infdis/jiaa666
  185. Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, Qiu X, et al. 2020. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383: 2291-2293. https://doi.org/10.1056/nejmc2031364
  186. Frampton D, Rampling T, Cross A, Bailey H, Heaney J, Byott M, et al. 2021. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect. Dis. 21: 1246-1256. https://doi.org/10.1016/S1473-3099(21)00170-5
  187. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al. 2021. Genomics and epidemiology of the P.1 SARSCoV-2 lineage in Manaus, Brazil. Science 372: 815-821. https://doi.org/10.1126/science.abh2644
  188. Lorenzo-Redondo R, Nam HH, Roberts SC, Simons LM, Jennings LJ, Qi C, et al. 2020. A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways. EBioMedicine 62: 103112. https://doi.org/10.1016/j.ebiom.2020.103112
  189. Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, et al. 2021. Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. J. Travel Med. 28: taab001. https://doi.org/10.1093/jtm/taab001
  190. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. 2021. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372: eabg3055. https://doi.org/10.1126/science.abg3055
  191. Kim YJ, Jang US, Soh SM, Lee JY, Lee HR. 2021. The impact on infectivity and neutralization efficiency of SARS-CoV-2 lineage B.1.351 pseudovirus. Viruses 13: 633. https://doi.org/10.3390/v13040633
  192. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. 2021. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184: 3426-3437. e8. https://doi.org/10.1016/j.cell.2021.04.025
  193. Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng M, et al. 2020. Patient-derived SARS-CoV-2 mutations impact viral replication dynamics and infectivity in vitro and with clinical implications in vivo. Cell Discov. 6: 76.
  194. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. 2020. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182: 1284-1294. e9. https://doi.org/10.1016/j.cell.2020.07.012
  195. Young BE, Wei WE, Fong SW, Mak TM, Anderson DE, Chan YH, et al. 2021. Association of SARS-CoV-2 clades with clinical, inflammatory and virologic outcomes: An observational study. EBioMedicine 66: 103319. https://doi.org/10.1016/j.ebiom.2021.103319
  196. Stauft CB, Lien CZ, Selvaraj P, Liu S, Wang TT. 2021. The G614 pandemic SARS-CoV-2 variant is not more pathogenic than the original D614 form in adult Syrian hamsters. Virology 556: 96-100. https://doi.org/10.1016/j.virol.2021.01.005
  197. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102: 7988-7993. https://doi.org/10.1073/pnas.0409465102
  198. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420-422. https://doi.org/10.1038/357420a0
  199. Tresnan DB, Levis R, Holmes KV. 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70: 8669-8674. https://doi.org/10.1128/jvi.70.12.8669-8674.1996
  200. Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 88: 5533-5536. https://doi.org/10.1073/pnas.88.13.5533