Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2020R1A2C1008995).
References
- K. Ferrara, R. Pollard, and M. Borden, "Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery," Annu. Rev. Biomed. Eng. 9, 415-447 (2007). https://doi.org/10.1146/annurev.bioeng.8.061505.095852
- P. A. Dayton and J. J. Rychak, "Molecular ultrasound imaging using microbubble contrast agents," Front. Biosci. 12, 5124-5142 (2007). https://doi.org/10.2741/2553
- K. E. Hitchcock, D. N. Caudell, J. T. Sutton, M. E. Klegerman, D. Vela, G. J. Pyne-Geithman, T. Abruzzo, P. E. P. Cyr, Y. J. Geng, D. D. McPherson, and C. K. Holland, "Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model," J. Control. Release. 114, 288-295 (2010). https://doi.org/10.1016/j.jconrel.2006.06.008
- S. Hernot and A. L. Klibanov, "Microbubbles in ultrasound-triggered drug and gene delivery," Adv. Drug Deliv. Rev. 60, 1153-1166 (2008). https://doi.org/10.1016/j.addr.2008.03.005
- W. Lauterborn, T. Kurz, R. Geisler, D. Schanz, and O. Lindau, "Acoustic cavitation, bubble dynamics and sonoluminescence," Ultrason. Sonochem. 14, 484-491 (2007). https://doi.org/10.1016/j.ultsonch.2006.09.017
- R. E. Apfel, "Acoustic cavitation: a possible consequence of biomedical uses of ultrasound," Br. J. Cancer, 45, 140-146 (1982). https://doi.org/10.1038/bjc.1982.17
- P. A. Dijkmans, L. J. M. Juffermans, R. J. P. Musters, A van Wamel, F. J. ten Cate, W. van Gilst, C. A. Visser, N. de Jong, and O. Kamp, "Microbubbles and ultrasound: from diagnosis to therapy," Eur. J. Echocardiogr. 5, 245-256 (2004). https://doi.org/10.1016/j.euje.2004.02.001
- S. A. Elder, "Cavitation microstreaming," J. Acoust. Am. 31, 54-64 (1959). https://doi.org/10.1121/1.1907611
- K. B. Bader and C. K. Holland, "Gauging the likelihood of stable cavitation from ultrasound contrast agents," Phys. Med. Biol. 58, 127-144 (2013). https://doi.org/10.1088/0031-9155/58/1/127
- M. L. Fabiilli, K. J. Haworth, N. H. Fakhri, O. K. Kripfgans, P. L. Carson, and J. B. Fowlkes, "The role of inertial cavitation in acoustic droplet vaporization," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 1006-1017 (2009). https://doi.org/10.1109/TUFFC.2009.1132
- L. Ye, X. Zhu, and X. Wei, "Ult rasonic cavit at ion damage characteristics of materials and a prediction model of cavitation impact load based on size effect," Int. J. Nanomed. 66, 105-115 (2020).
- D. Vancraeynest, X. Havaux, A. C. Pouleur, A. Pasquet, B. Gerber, C. Beauloye, P. Rafter, L. Bertrand, and J. L. J. Vanoverschelde, "Myocardial delivery of colloid nanoparticles using ultrasound targeted microbubble destruction," Eur. Heart J. 27, 237-245 (2006). https://doi.org/10.1093/eurheartj/ehi479
- H. Lee, H. Kim, H. Han, M. Lee, S. Lee, H. Yoo, J. H. Chang, and H. Kim, "Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications," Biomed. Eng. Lett. 7, 59-69 (2017). https://doi.org/10.1007/s13534-017-0016-5
- C. C. Coussions and R. A. Roy, "Applications of acoustics and cavitation to noninvasive therapy and drug delivery," Annu. Rev. Fluid Mech. 40, 395-420 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102116
- D. H. Park, H. C. Jung, J. Park, S. Bae, U. C. Shin, S. W. Kim, C. W. Kim, Y. H. Lee, and J. Seo, "Synthesis of echogenic liposomes for sonoporation," Micro & Nano Letters, 17, 276-285 (2022). https://doi.org/10.1049/mna2.12133
- J. Park, D. Park, U. Shin, S. Moon, C. Kim, H. S. Kim, H. Park, K. Choi, B. K. Jung, J. Oh, and J. Seo, "Synthesis of laboratory ultrasound contrast agents," Molecules, 18, 13078-13095 (2013). https://doi.org/10.3390/molecules181013078
- N. P. Ferreto and G. M. Calaf, "Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines," Int. J. Oncol. 49, 753-762 (2016). https://doi.org/10.3892/ijo.2016.3558
- I. Lentacker, B. Geers, J. Demeester, S. C De Smedt, and N. N Sanders, "Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved," Mol. Ther. 18, 101-108 (2010). https://doi.org/10.1038/mt.2009.160
- D. Sharma, K. X. Leong, and G. J. Czarnota, "Application of ultrasound combined with microbubbles for cancer therapy," Int. J. Mol. Sci. 23, 4393 (2022). https://doi.org/10.3390/ijms23084393
- D. Park, J. Park, H. Kim, C. H. Kim, T. Y. Han, H. Park, and J. Seo, "A high-precision angular control system for HIFU calibration," Ultrasonics, 53, 45-52 (2013). https://doi.org/10.1016/j.ultras.2012.03.012
- C. C. Church, "The effects of an elastic solid surface layer on the radial pulsations of gas bubbles," J. Acoust. Soc. Am. 97, 1510-1521 (1995). https://doi.org/10.1121/1.412091
- T. J. Leighton, The Acoustic Bubble (Academic Press, New York, 1994), pp 140-157.
- A. Kheirolomoom, P. A Dayton, A, F. H. Lum, E. Little, E. E. Paoli, H. Zheng, and K. W. Ferrar, "Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle," J. Control. Release. 118, 275-284 (2007). https://doi.org/10.1016/j.jconrel.2006.12.015
- J. M. Escoffre, J. Piron, A. Novell, and A. Bouakaz, "Doxorubicin delivery into tumor cells with ultrasound and microbubbles," Mol. Pharm, 8, 799-806 (2011). https://doi.org/10.1021/mp100397p