DOI QR코드

DOI QR Code

초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey

  • 김대식 (전북대학교 자원.에너지공학과) ;
  • 신정균 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 하지호 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 강년건 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 오주원 (전북대학교 자원.에너지공학과)
  • Kim, Dae-sik (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Shin, Jungkyun (Pohang Branch, Korea Institute of Geoscience and Mineral Resources) ;
  • Ha, Jiho (Pohang Branch, Korea Institute of Geoscience and Mineral Resources) ;
  • Kang, Nyeon Keon (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Oh, Ju-Won (Department of Mineral Resources and Energy Engineering, Jeonbuk National University)
  • 투고 : 2022.05.03
  • 심사 : 2022.08.01
  • 발행 : 2022.08.31

초록

초고해상 3차원 탄성파 탐사를 통하여 취득된 자료는 수백 Hz 이상의 높은 주파수 대역에 의하여 수치 모델링에 기반 한 역시간 구조보정의 계산효율성이 확보되지 않는다. 이에 본 연구에서는 초고해상 탐사자료를 활용하여 고품질의 3차원 지질구조를 효율적으로 도출할 수 있는 역시간 구조보정 프로그램을 개발하였다. 우리는 전통적인 3차원 역시간 구조보정 프로그램의 메모리 사용량 및 계산시간을 대폭 축소하기 위하여 음원 파동장의 최대 진폭만을 저장하여 영상화를 수행하는 여기진폭 기법과 연산 영역을 음원과 수신기가 위치한 최소한의 영역인 로컬 도메인으로 제한하는 기법을 적용하였다. 본 연구를 통해 개발된 프로그램은 2019년에 한국지질자원연구원에서 획득한 초고해상 3차원 탄성파 탐사 자료에 대하여 수평방향 격자 크기가 1 m인 3차원 구조보정 영상을 성공적으로 도출하였으며 지질학적인 해석이 수행되었다.

The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

키워드

과제정보

본 연구는 한국지질자원연구원 주요사업인 '해저탐사선 운항안정화 및 연근해 탐사기술 개발(22-3313)' 과제의 일환으로 수행되었습니다.

참고문헌

  1. Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics, 39(6), 834-842. https://doi.org/10.1190/1.1440470
  2. Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration, Geophysics, 48(11), 1514-1524. https://doi.org/10.1190/1.1441434
  3. Brookshire, B. N., Landers, F. P., and Stein, J. A., 2015, Applicability of ultra-high-resolution 3D seismic data for geohazard identification at mid-slope depths in the Gulf of Mexico: Initial results, Underw. Technol., 32(4), 271-278. https://doi.org/10.3723/ut.32.271
  4. Brookshire, B. N., Lippus, C., Parish, A., Mattox, B., and Burks, A., 2016, Dense arrays of short streamers for ultrahighresolution 3D seismic imaging, Lead. Edge, 35(7), 594-599. https://doi.org/10.1190/tle35070594.1
  5. Chen, Y., and Huang, Y., 2010. Use Q-RTM to image beneath Gas Hydrates in Alaminos Canyon, Gulf of Mexico. 80th SEG annual meeting, 3165-3170. https://doi.org/10.1190/1.3513504
  6. Claerbout, J. F., 1971, Toward a unified theory of reflector mapping, Geophysics, 36(3), 467-481. https://doi.org/10.1190/1.1440185
  7. Dragoset, B., 2005, A historical reflection on reflections, Leading Edge, 24(s1), 46-70. https://doi.org/10.1190/1.2112392
  8. Dussaud, E., Symes, W. W., Williamson, P., Lemaistre, L., Singer, P., Denel, B., and Cherrett, A., 2008, Computational strategies for reverse-time migration. In SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2267-2271. https://doi.org/10.1190/1.3059336
  9. Gray, S. H., and May, W. P., 1994, Kirchhoff migration using eikonal equation traveltimes, Geophysics, 59(5). https://doi.org/10.1190/1.1443639
  10. French, W. S., 1975, Computer migration of oblique seismic reflection profiles, Geophysics, 40(6), 961-980. https://doi.org/10.1190/1.1440591
  11. KIGAM, 2017, Development of Engineering-scale 3D system for Marine Seismic Exploration. https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201600000638
  12. KIGAM, 2019, Development of real-time monitoring mobile system for Shallow 3D seismic survey. https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202000005456
  13. Kim, W., Shin, J., Kim, H., Yi, B. Y., Park, C., Kim, C., Seo, G., Cho, D., Jung, Y., Lee, H. Y., Lee, H. Y., and Kang, D. H., 2018 Imaging the completely buried anomaly using a small-ship three-dimensional seismic survey system, J. Coast. Res., 85(sp1), 1196-1200. https://doi.org/10.2112/SI85-240.1
  14. Lee, D., Kim, B., Kim, J., and Jang, S., 2022, Shallow Gas Exploration in the Pohang Basin Transition Zone, Geophys. Explor., 25(1), 1-13. https://doi.org/10.7582/GGE.2022.25.1.1
  15. Lee, H., Park, K., Koo, N., Yoo, D., Kang, D., Kim, Y., Hwang, K., and Kim, J., 2004, High-resolution shallow marine seismic surveys off Busan and Pohang, Korea, using a small-scale multichannel system, Journal of Applied Geophysics, 56(1), 1-15. https://doi.org/10.1016/j.jappgeo.2004.03.003
  16. Liner, C. L., 2000, On the history and culture of geophysics and science in general, The Leading Edge, 19(5), 502-504. https://doi.org/10.1190/1.1438642
  17. Liner, C. L., 2016, Elements of 3D Seismology, Third Edition. Society of Exploration Geophysicists. https://library.seg.org/doi/pdf/10.1190/1.9781560803386.ref
  18. Nguyen, B. D., and McMechan, G. A., 2013, Excitation amplitude imaging condition for prestack reverse-time migration, Geophysics, 78(1), 37-46. https://doi.org/10.1190/geo2012-0079.1
  19. Nguyen, B. D., and McMechan, G. A., 2015, Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration, Geophysics, 80(1), 1-18. https://doi.org/10.1190/geo2014-0014.1
  20. Monrigal, O., Jong, I. D., and Duarte, H., 2017, An ultra-high-resolution 3D marine seismic system for detailed site investigation, Near Surface Geophysics, 15(4), 335-345. https://doi.org/10.3997/1873-0604.2017025
  21. Oh, J.-W., Kalita, M., and Alkhalifah, T., 2018. 3D elastic full-waveform inversion using P-wave excitation amplitude: Application to ocean bottom cable field data, Geophysics, 83(2), R129-R140. https://doi.org/10.1190/geo2017-0236.1
  22. Planke, S., Eriksen, F. N., Berndt, C., Mienert, J., and Masson, D., 2009, P-Cable high-resolution seismic, Oceanography, 22(1), 85. https://oceanrep.geomar.de/id/eprint/1163/1/896_Planke_2009_PcableHighresolution3dSeismic_Artzeit_pubid12739.pdf https://doi.org/10.5670/oceanog.2009.09
  23. Ravasi, M., Vasconcelos, I., Curtis, A., and Kritski, A., 2015. Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields. Geophysics, 80(4), S137-S150. https://doi.org/10.1190/geo2014-0554.1
  24. Roy, A., and Chazalnoel, N., 2011. RTM technology for improved salt imaging in the Santos Basin, Brazil. 2011 SEG annual meeting, San Antonio, Texas, 1812-1816. https://doi.org/10.1190/1.3627869
  25. Schneider, W. A. 1971. Developments in seismic data processing and analysis (1968-1970). Geophysics, 36(6), 1043-1073. https://doi.org/10.1190/1.1440232
  26. Shin, J., Ha, J., Kang, N., Kim, H., and Kim, C., 2021, Development of a portable 3D seismic survey system for nearshore surveys and the first case study offshore Pohang, South Korea, Mar. Geophys. Res., 42(34), 1-16. https://doi.org/10.1007/s11001-021-09453-x
  27. Sirgue, L., Etgen, J., and Albertin, U., 2008, 3D frequency domain wave-form inversion using time domain finite difference methods, 70th Ann. Internat. Conference and Exhibition Incorporating SPEEUROPEC, EAGE, Expanded Abstracts, cp-40. https://doi.org/10.3997/2214-4609.20147683
  28. Sun, X., and Li, Z., 2017. Application of least-squares reverse time migration to CO2 storage monitoring. 2017 SEG annual meeting, Qingdao, China, 91-94. https://doi.org/10.1190/IGC2017-024
  29. Symes, W. W., 2007, Reverse time migration with optimal checkpointing, Geophysics, 72(5), 213-221. https://doi.org/10.1190/1.2742686
  30. Yang, D., Malcolm, A., Fehler, M., and Huang, L., 2014. Timelapse walkaway vertical seismic profile monitoring for CO2 injection at the SACROC enhanced oil recovery field: A case study, Geophysics, 79(2), 51-61. https://doi.org/10.1190/geo2013-0274.1
  31. Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data, 2nd edition, Society of Exploration Geophysicists, Tulsa, Oklahoma, USA. https://doi.org/10.1190/1.9781560801580.fm
  32. Zhou, H. W., Hu, H., Zou, Z., Wo, Y., and Youn, O., 2018, Reverse time migration: A prospect of seismic imaging methodology, Earth-Science Rev., 179, 207-227. https://doi.org/10.1016/j.earscirev.2018.02.008