DOI QR코드

DOI QR Code

전기비저항 및 유도분극 탐사에 의한 저수지 누수지수 산출

Quantitative Evaluation of Leak Index from Electrical Resistivity and Induced Polarization Surveys in Embankment Dams

  • 조인기 (강원대학교 지질지구물리학부) ;
  • 김연정 (강원대학교 대학원 지구물리학과) ;
  • 송성호 (한국농어촌공사 농어촌기술연구원)
  • Cho, In Ky (Division of Geology and Geophysics, Kangwon National University) ;
  • Kim, Yeon Jung (Department of Geophysics, Kangwon National University) ;
  • Song, Sung Ho (Rural Research Institute, Korea Rural Community Corporation)
  • 투고 : 2022.06.08
  • 심사 : 2022.07.20
  • 발행 : 2022.08.31

초록

국내에는 17,000여개의 저수지가 존재하며, 이중 85% 이상은 50년 이상 경과된 노후 저수지이다. 이들 저수지는 내부침식 및 세굴 현상에 의한 누수와, 그에 따른 붕괴의 위험에 직면하고 있다. 이들 저수지 및 댐의 붕괴를 방지하기 위해서는 누수를 조기에 파악하고 대비하는 것이 중요하다. 전기비저항 탐사는 저수지의 전반적인 상태 파악은 물론 누수의 발달여부 탐지가 가능한 비파괴, 실시간, 현장조사법이다. 이러한 장점 때문에 전기비저항 탐사법은 저수지 안전진단에 널리 사용되고 있다. 그러나 전기비저항 탐사법은 저수지의 안전도에 대한 정량적인 지수를 제공하지 못해 공식적으로 저수지 정밀 안전진단의 상태평가 항목에 포함되어 있지 못하다. 이 연구에서는 전기비저항 탐사와 유도분극 탐사를 통하여 계산된 수분함량에 근거한 정량적 누수지수 산출법을 제시하였다. 특히 일회성 탐사와 모니터링에 의한 정량적 누수지수 산출법을 개발하여 전기비저항 탐사와 유도분극 탐사가 향후 저수지 정밀 안전진단의 상태평가 항목으로 진입할 수 있는 이론적 기반을 제시하였다.

There are 17,000 reservoir dams in Korea, of which more than 85% were built over 50 years ago. Old embankment dams are weakened by internal erosion and suffusion phenomena due to preferential leakage paths and this ongoing weakening can cause their failure. Therefore, early warning associated with leakage in an embankment dam is crucial to prevent its failure. An electrical resistivity survey is a non-destructive, real-time and in-situ technique for detecting the development of leakage zones and general conditions of embankment dams. Because of its advantages, the electrical resistivity survey is widely used for reservoir safety inspections. However, the electrical resistivity survey is still not officially included in the precise safety inspection of reservoir dams because it cannot present a quantitative index of dam safety. In this study, we propose a method for calculating the leak index according to the water content evaluated from the electrical resistivity survey and/or induced polarization survey. Particularly, by proposing a quantitative leak index calculation method from monitoring surveys and independent surveys, we provide a theoretical basis for including electrical resistivity and induced polarization surveys as components of the precise safety inspection of reservoirs dams.

키워드

과제정보

이 논문은 2020년도 강원대학교 대학회계의 지원을 받아 수행한 연구임.

참고문헌

  1. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54-62. https://doi.org/10.2118/942054-G
  2. Abdulsamad, F., Revil, A., Soueid Ahmed, A., Coperey, A., Karaoulis, M., Nicaise, S., and Peyras, L., 2019, Induced polarization tomography applied to the detection and the monitoring of leaks in embankments, Eng. Geol., 254, 89-101, https://doi.org/10.1016/j.enggeo.2019.04.001
  3. Cassiani, G., Bruno, V., Villa, A., Fusi, N., and Binley, A. M., 2006, A saline trace test monitored via time-lapse surface electrical resistivity tomography, J. Appl. Geophys., 59, 244-259. https://doi.org/10.1016/j.jappgeo.2005.10.007
  4. Cho, I. K., Kang, H. J., Lee, B. H., Kim, B. H., Yi, S. S., Park, Y. G., and Lee, B. H., 2006, Safety index evaluation from resistivity monitoring data for a reservoir dyke, Geophys. Geophys. Explor., 9(2), 155-162. https://koreascience.kr/article/JAKO200634515053340.page
  5. Cho, I. K., and Yong, H. H., 2019, 3D resistivity survey for dam safety inspection, Geophys. and Geophys. Explor., 22(3), 99-106. https://doi.org/10.7582/GGE.2019.22.3.099
  6. Cho, I. K., and Kim, Y. J., 2021, Nonlinear inversion of time-domain induced polarization data including negative apparent chargeability data, Geophys. and Geophys. Explor., 24(4), 139-148. https://doi.org/10.7582/GGE.2021.24.4.139
  7. Cho, I. K., Ha, I. K., Kim, K. S., Ahn, H. Y., Lee, S., and Kang, H. J., 2013, 3D effects on 2D resistivity monitoring in earth-fill dams, Near Surf. Geophys., 12, 73-81. https://doi.org/10.3997/1873-0604.2013065
  8. Cho, I. K., and Jeong, D. B., 2022, 4D inversion of resistivity monitoring data with adaptive time domain regularization, J. Appl. Geophys., 198, 104559, https://doi.org/10.1016/j.jappgeo.2022.104559
  9. Cho, I. K., Lee, K. S., and Kang, H. J., 2010, 3D Effect of embankment dam geometry to resistivity Data, Geophys. and Geophys. Explor., 13, 397-406. https://koreascience.kr/article/JAKO201013354299552.page 1013354299552.page
  10. Cho, I. K., and Yeom, J. Y., 2007, Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam, Geophysics, 72, G31-G38. https://doi.org/10.1190/1.2435200
  11. Dahlin, T., Bernstone, C., and Loke, M. H., 2002, A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden, Geophysics, 67, 1692-1700. https://doi.org/10.1190/1.1527070
  12. Day-Lewis, F. D., Harris, J. M., and Gorelick, S. M., 2002, Time-lapse inversion of crosswell radar data, Geophysics, 67, 1740-1752. doi:10.1190/1.1527075
  13. Doetsch, J., Fiandaca, G., Auken, E., Christiansen, A. V., Cahill, A. G., and Jakobsen, R., 2015, Field-scale time-domain spectral induced polarization monitoring of geochemical changes induced by injected CO2 in a shallow aquifer, Geophysics, 80(2), WA113-WA126, doi:10.1190/geo2014-0315.1
  14. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A. V., 2012, Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study, Near Surf. Geophys., 10, 575-586. https://doi.org/10.3997/1873-0604.2012046
  15. Hayley, K., Bentley, L. R., and Pidlisecky, A., 2010, Compensating for temperature variations in time-lapse electrical resistivity difference imaging, Geophysics, 75(4), WA51-WA59. https://doi.org/10.1190/1.3478208
  16. Hong, B. M., 2004, Problems and improvement plan of agricultural reservoir construction, J. Korea Water Resour. Asso., 37(4), 29-33.
  17. Johansson, S., and Dahlin, T., 1996, Seepage monitoring in an earth embankment dam by repeated resistivity measurements, European J. Engin. Environ. Geophys., 1, 229-247. https://www.researchgate.net/publication/271190903_Seepage_monitoring_in_an_earth_embankment_dam_by_repeated_resistivity_measurements https://doi.org/10.4133/JEEG1.3.229
  18. Karaoulis, M., Kim, J. H., and Tsourlos, P. I., 2011, 4D active time constrained inversion, J. Appl. Geophys., 73, 25-34. https://doi.org/10.1016/j.jappgeo.2010.11.002
  19. Karaoulis, M., Revil, A., Werkema, D. D., Minsley, B. J., Woodruff, W. F., and Kemna, A., 2011, Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach, Geophys. J. Int., 187, 237-251, doi:10.1111/j.1365-246X.2011.05156.x
  20. Karaoulis, M., Revil, A., Werkema, D. D., Tsourlos, P., and Minsley, B. J., 2013, IP4DI: a software for time-lapse 2D/3D DC-resistivity and induced polarization tomography, Comput. Geosci., 54, 164-170. https://doi.org/10.1016/j.cageo.2013.01.008
  21. Karaoulis, M., Tsourlos, P.I., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints, Near Surf. Geophys., 12, 25-34. https://doi.org/10.3997/1873-0604.2013004
  22. Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H., 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125-146. doi:10.1016/S0022-1694(02)00145-2
  23. Kim, D. H., Jang T. I., Hwang, S. W., and Cho, J. P., 2019, Assessing hydrologic impacts of climate change in the Mankyung watershed with different GCM spatial downscaling methods, JKSAE, 61(6), 81-92, h ttps://doi.org/10.5389/KSAE.2019.61.6.081
  24. Kim, J. H., Yi, M. J., Park, S .G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model, J. Appl. Geophys., 68, 522-532. https://doi.org/10.1016/j.jappgeo.2009.03.002
  25. Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations, Geophys. J. Int., 195, 1640-1656. doi:10.1093/gji/ggt324
  26. Kim, K. J., and Cho, I. K., 2011, Time-lapse inversion of 2D resistivity monitoring data with a spatially varying cross-model constraint, J. Appl. Geophys., 74, 114-122. https://doi.org/10.1016/j.jappgeo.2011.04.010
  27. Kim, M., Lee, C. Hwang, S. Ham, J., and Choi, J., 2021, A study on the minimization of expected casualty caused by the collape of reservoir, J. Korean Geograph. Soc., 56(3), 277-287, https://doi.org/10.22776/kgs.2021.56.3.277
  28. KRC (Korea Rural Community Corporation), 2014, The Improvement of Assessment Criteria and Techniques of Safety Inspection for Agricultural Infrastructures, Research report, No. 11-5143000-000717-01.
  29. KRC (Korea Rural Community Corporation), 2020, Statistical yearbook of land and water development for agriculture, Report No. 11-138000-0000140-10
  30. LaBrecque, D. J., and Yang, X., 2001, Difference inversion of ERT data: a fast inversion method for 3D in situ monitoring, J. Environ. Eng. Geophys., 6, 83-90. https://doi.org/10.4133/JEEG6.2.83
  31. Loke, M. H., 1999, Time lapse resistivity imaging inversion, in Proceedings of the 5th Meeting of the Environmental and Engineering Society European Section, Em1, September 6-9, 1999, Budapest, Hungary. doi: https://doi.org/10.3997/2214-4609.201406397
  32. Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys., 95, 135-156. https://doi.org/10.1016/j.jappgeo.2013.02.017
  33. Loke, M. H., Dahkn, T., and Rucker, D. E., 2014, Smoothness constrained time-lapse inversion of data from 3D resistivity survey, Near Surf. Geophys., 12, 5-24. doi: https://doi.org/10.3997/1873-0604.2013025
  34. Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization, Geophysics, 73, G7-G17. https://doi.org/10.1190/1.2907156
  35. Oh, S. and Sun, C. G., 2008, Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam, Environ. Geol., 54(1), 31-42. https://link.springer.com/article/10.1007/s00254-007-0790-y
  36. Oh, S. G., Lee, J. Y., Jung, J. W., Song J. T., You, S. Y., and Lee J. C., 2020, Water quality characteristic for agricultural reservoirs in Yeongsan River Basin, J. of the Korean Soc. for Environ, Tech., 21(1), 15-23. https://doi.org/10.1190/1.2734365
  37. Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer, Geophysics, 72, F177-F188. https://doi.org/10.1190/1.2734365
  38. Oldenburg, D. W., and Li., Y., 1994, Inversion of induced polarization data, Geophysics, 59, 1327-1341. https://doi.org/10.1190/1.1443692
  39. Panthulu, T. V., Krishnaiah, C., and Shirke, J. M., 2001, Detection of seepage path in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59, 281-295. https://doi.org/10.1016/S0013-7952(00)00082-X
  40. Park, J. Y., Joh, H. K., Lee, J. H., Kang, B. S., Yoon, C. J., and Kim, S. J., 2010, Suggestion of simple method for downstream damage evaluation by small dam break using GIS technique, Proceedings of the 2010 KSAE Annual Conference.
  41. Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophys. and Geophys. Explor., 8(2), 177-183. https://koreascience.kr/article/JAKO200507921815395.page
  42. Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., Deng, Y., Delsman, J. R., Pauw, P. S., Karaoulis, M., de Louw, P. G. B., van Baaren E. S., Dabekaussen, W., Menkovic, A., and Gunnink, J. L., 2017a, Complex conductivity of soils, Water Resour. Res., 53, 7121-7147, doi:10.1002/2017WR020655
  43. Revil, A., Eppehimer, J. D., Skold, M., Karaoulis, M., Godinez, L., and Prasad, M., 2013, Low-frequency complex conductivity of sandy and clayey materials, J. Coloid Interface Sci., 398, 193-209, http://dx.doi.org/10.1016/j.jcis.2013.01.015
  44. Revil, A., Kessouri, P., and Torres-Verdin, C., 2014. Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone, Geophysics, 79(5), D301-D318. https://doi.org/10.1190/geo2014-0036.1
  45. Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., and Thomas, D. M., 2017b, Induced polarization of volcanic rocks. 1: Surface versus quadrature conductivity, Geophys. J. Int., 208, 826-844, doi:10.1093/gji/ggw444
  46. Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., and Thomas, D. M., 2017c, Induced polarization of volcanic rocks. 2: Influence of pore size and permeability, Geophys. J. Int., 208, 814-825, doi:10.1093/gji/ggw382
  47. Shin E. C., and Lee, J. K., 2012, Safety management improving of small agricultural reservoir, J. Korean Geosynth. Soc., 11(3), 53-58. https://doi.org/10.12814/jkgss.2012.11.3.053
  48. Sjodahl, P., Dahlin, T., and Zhou, B., 2006, 2.5D resistivity modeling of embankment dams to assess influence from geometry and material properties, Geophysics, 71, G107-G114. https://doi.org/10.1190/1.2198217
  49. Seigel, H., Nabighian, M., Parasnis, D. S., and Vozoff, K., 2007, The early history of the induced polarization method, Lead. Edge, 26(3), 312-321. https://library.seg.org/doi/abs/10.1190/1.2715054
  50. Song, S. H., Song, Y. H., and Kwon, B. D., 2005, Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam, Explor. Geophys., 36, 73-77. https://doi.org/10.1071/EG05092
  51. Song, S. H., Yong, H. H., Lee, G. S., and Cho, I. K., 2019, Safety analysis of reservoir dikes in South Korea through the interpretation of the electrical resistivity data considering three-dimensional structure, Geophys. and Geophys. Explor., 22(3), 160-167. https://doi.org/10.7582/GGE.2019.22.3.160
  52. Song, Y. K., Kim, Y. U., Kim K., and Lee, K. S., 2016, Countermeasure on safety management of decrepit reservoir based on the comparative analysis for its collapse accidents, Crisisonomy, 12(7), 15-23. https://scholar.kyobobook.co.kr/article/detail/4010024946628 10024946628
  53. Soueid Ahmed, A., Revil, A., Abdulsamad, F., Steck, B., Vergniault, C., and Guihard, V., 2020, Induced polarization as a tool to non-intrusively characterize embankment hydraulic properties, Eng. Geol., 271, 105604, h ttps://doi.org/10.1016/j.enggeo.2020.105604
  54. Zarif, F., Kessouri, P., and Slater, L., 2017, Recommendations for field-scale induced polarization (IP) data acquisition and interpretation, J. Envion. Eng. Geophys., 22(4), 395-410. https://doi.org/10.2113/JEEG22.4.39