DOI QR코드

DOI QR Code

Electrodeposited WO3 films and their application in electrochromic boards

  • Kim, Dae-Hyeon (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Kang, Kwang-Mo (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Nah, Yoon-Chae (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education (KOREATECH))
  • Received : 2022.08.21
  • Accepted : 2022.08.24
  • Published : 2022.08.31

Abstract

WO3 thin films were synthesized by electrodeposition, and their electrochromic properties were investigated. The application of static voltage produced WO3 films with a smooth, compact surface morphology, and the film thickness linearly increased with the application time. The thicker film showed a strong color contrast but a slow color-switching speed. High-temperature heat treatment exceeding 300 ℃ induced a phase transformation from an amorphous to a monoclinic structure and resulted in degraded electrochromic performance. Furthermore, the optimized WO3 thin films demonstrated their potential application as electrochromic boards for writing and erasing letters using a simple modified 3D printer in a rapid, accurate process

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1F1A1062961) and was also supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2021RIS-004). This paper was supported by Education and Research promotion program of KOREATECH in 2020. The authors acknowledge the FE-SEM measurement by Cooperative Equipment Center at KOREATECH.

References

  1. T. H. Kim, S. H. Park, D. H. Kim, Y. C. Nah, H. K. Kim, Roll-to-roll sputtered ITO/Ag/ITO multilayers for highly transparent and flexible electrochromic applications, Sol. Energy Mater. Sol. Cells, 160 (2017) 203-210. https://doi.org/10.1016/j.solmat.2016.10.033
  2. X. Hou, Z. Wang, J. Pan, F. Yan, Ionic liquid electrolyte-based switchable mirror with fast response and improved durability, ACS Appl. Mater. Interfaces, 13 (2021) 37339-37349. https://doi.org/10.1021/acsami.1c07438
  3. S. Macher, M. Schott, M. Dontigny, A. Guerfi, K. Zaghib, U. Posset, P. Lobmann, Large-area electrochromic devices on flexible polymer substrates with high optical contrast and enhanced cycling stability, Adv. Mater. Technol., 6 (2021) 2000836.
  4. S. K. Deb, A novel electrophotographic system, Appl. Opt., 8 (1969) 192-195. https://doi.org/10.1364/AO.8.000192
  5. Y. J. Park, K. M. Kang, J. H. Kang, S. H. Han, H. S. Jang, J. Y. Lee, T. S. Yoon, Y. C. Nah, D. H. Kim, Enhancement of electrochromic response and cyclic durability of WO3 thin films by stacking Nb2O5 layers, appl. Surf. Sci., 582 (2022) 152431.
  6. H. Yang, J. H. Yu, H. J. Seo, R. H. Jeong, J. H. Boo, Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum, Appl. Surf. Sci., 461 (2018) 88-92. https://doi.org/10.1016/j.apsusc.2018.05.231
  7. C. Eyovge, C. S. Deenen, F. R. Zepeda, S. Bartling, Y. Smirnov, M. M. Masis, A. S. Arce, H. Gardeniers, Color tuning of electrochromic TiO2 nanofibrous layers loaded with metal and metal oxide nanoparticles for smart colored windows, ACS Appl. Nano Mater., 4 (2021) 8600-8610. https://doi.org/10.1021/acsanm.1c02231
  8. M. Li, D. Weng, Y. Wei, J. Zheng, C. Xu, Durability-reinforced electrochromic device based on surface-confined Ti-doped V2O5 and solution-phase viologen, Electrochim. Acta., 248 (2017) 206-214. https://doi.org/10.1016/j.electacta.2017.07.049
  9. A. Chaudhary, D. K. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, R. Kumar, Prussian blue-cobalt oxide double layer for efficient all-inorganic multicolor electrochromic device, ACS Appl. Eletron. Mater., 2 (2020) 1768-1773. https://doi.org/10.1021/acsaelm.0c00342
  10. D. K. Pathak, A. Chaudhary, M. Tanwar, U. K. Goutam, R. Kumar, Nano-cobalt oxide/viologen hybrid solid state device: Electrochromism beyond chemical cell, Appl. Phys. Lett. 116 (2020) 141901.
  11. H. Gong, K. Zhou, Q. Zhang, J. Liu, H. Wang, H. Yan, A self-patterning multicolor electrochromic device driven by horizontal redistribution of ions, Sol. Energy Mater. Sol. Cells, 215 (2020) 110642.
  12. S. Macher, M. Schott, M. Dontigny, A. Guerfi, K. Zaghib, U. Posset, P. Lobmann, Large-area electrochromic devices on flexible polymer substrates with high optical contrast and enhanced cycling stability, Adv. Mater. Technol., 6 (2021) 2000836.
  13. M. Musiani, Electrodeposition of composites: an expanding subject in electrochemical materials science, Electrochim. Acta, 45 (2020) 3397-3402. https://doi.org/10.1016/S0013-4686(00)00438-2
  14. K. M. Kang, J. H. Jeong, G. I. Lee, J. M. Im, H. J. Cheon, D. H. Kim, Y. C. Nah, Photocatalytic properties of WO3 thin films prepared by electrodeposition method, J. Korean Powder Metall. Inst., 26 (2019) 40-44. https://doi.org/10.4150/KPMI.2019.26.1.40
  15. S. H. Park, H. J. Mo, J. K. Lim, S. G. Kim, J. H. Choi, S. H. Lee, S. H. Jang, K. H. Cha, Y. C. Nah, High-contrast electrochromism of porous tungsten oxide thin films prepared by electrodeposition, J. Korean Powder Metall. Inst., 25 (2018) 7-11. https://doi.org/10.4150/KPMI.2018.25.1.7
  16. V. H. V. Quy, I. R. Jo, S. H. Kang, K. S. Ahn, Amorphous-crystalline dual phase WO3 synthesized by pulsed-voltage electrodeposition and its application to electrochromic devices, J. Ind. Eng. Chem., 94 (2021) 264-271. https://doi.org/10.1016/j.jiec.2020.10.047
  17. N. Shahrubudin, T. C. Lee, R. Ramlan, An overview on 3D printing technology: Technological, materials, and applications, Procedia Manuf., 35 (2019) 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
  18. C. Hu, Q. H. Qin, Advances in fused deposition modeling of discontinuous fiber/polymer composites, Curr. Opin. Solid State Mater Sci., 24 (2020) 100867.
  19. T. H. Duong, N. I. Jaksic, J. L. DePalma, B. Ansaf, D. M. Daniel, J. Armijo, M. Galaviz, G-code visualization and editing program for inexpensive metal 3D printing, Procedia Manufacturing, 17 (2018) 22-28. https://doi.org/10.1016/j.promfg.2018.10.007
  20. D. Vak, K. Hwang, A. Faulks, Y. S. Jung, N. Clark, D. Y. Kim, G. J. Wilson, S. E. Watkins, 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells, Adv. Energy Mater., 5 (2015) 1401539.
  21. C. A. Milroy, S. Jang, T. Fujimori, A. Dodabalapur, A. Manthiram, Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing, Small, 13 (2017) 1603786.
  22. A. Lind, O. Vistad, N. F. Sunding, K. A. Andeassen, J. H. Cavka, C. A. Grande, Multi-purpose structured catalysts designed and manufactured by 3D printing, Mater. Des., 187 (2020) 108377.
  23. H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, H. Wang, Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards, Mater. Horiz., 5 (2018) 1000-1007. https://doi.org/10.1039/c8mh00856f
  24. H. Simchi, B. E. McCandless, T. Meng, W. N. Shafarman, Structural, optical, and surface properties of WO3 thin films for solar cells, J. Alloys Compd., 617 (2014) 609-615. https://doi.org/10.1016/j.jallcom.2014.08.047
  25. W. L. Kwong, P. Koshy, J. N. Hart, W. Xu, C. C. Sorrell, Critical role of {002} preferred orientation on electronic band structure of electrodeposited monoclinic WO3 thin films, Sustain. Energy Fuels, 10 (2018) 2224-2236.