References
- R.P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Adv. Stud. Contemp. Math., 16 (2008), 181-196.
- G. Bahia, A. Ouannas, I.M. Batiha and Z. Odibat, The optimal homotopy analysis method applied on nonlinear time-fractional hyperbolic partial differential equations, Numer. Methods Part. Diff. Equ., 37(3) (2021), 2008-2022. https://doi.org/10.1002/num.22639
- K. Balachandran, L. Byszewski and J.K. Kim, Nonlocal Cauchy problem for second order functional differential equations and fractional differential equations, Nonlinear Funct. Anal. Appl., 24(3) (2019), 457-475.
- N. Djenina, A. Ouannas, I.M. Batiha, G. Grassi and V-T. Pham, On the stability of linear incommensurate fractional-order difference systems, Mathematics, 8(10) (2020), 1754. https://doi.org/10.3390/math8101754
- J.H. He, Nonlinear oscillation with fractional derivative and its applications, International Conference on Vibrating Engineering'98, Dalian, China, (1998), 288-291.
- J.H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86-90.
- J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57-68. https://doi.org/10.1016/S0045-7825(98)00108-X
- A-A. Khennaoui, A. Ouannas, S. Momani, I.M. Batiha, Z. Dibi and G. Grassi, On dynamics of a fractional-order discrete system with only one nonlinear term and without fixed points, Electronics, 9(12) (2020), 2179. https://doi.org/10.3390/electronics9122179
- B. Khaminsou, Ch. Thaiprayoon, W. Sudsutad and S.A. Jose, Qualitative analysis of a proportional Caputo fractional Pantograph differential equation with mixed nonlocal conditions, Nonlinear Funct. Anal. Appl., 26(1) (2021), 197-223.
- A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- X.J. Li and C.J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commu. Comput. Phys., 8(5) (2010), 1016-1051. https://doi.org/10.4208/cicp.020709.221209a
- X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47(3) (2009), 2108-2131. https://doi.org/10.1137/080718942
- K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, J. Wiley, New York, 1993.
- A. Ouannas, F. Mesdoui, S. Momani, I. Batiha and G. Grassi, Synchronization of FitzHugh-Nagumo reaction-diffusion systems via one-dimensional linear control law, Archives of Control Sci., 31(2) (2021), 333-345.
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
- I. Talbi, A. Ouannas, A-A. Khennaoui, A. Berkane, I.M. Batiha, G. Grassi and V-T. Pham, Different dimensional fractional-order discrete chaotic systems based on the Caputo h-difference discrete operator: dynamics, control, and synchronization, Adv. Differ. Equ., 2020 (2020), 624. https://doi.org/10.1186/s13662-020-03086-x