Acknowledgement
It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.
References
- I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
- I. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22 (2021), 153-171. https://doi.org/10.18514/MMN.2021.3173
- H.S. Ding, M. Imdad, S. Radenovic and J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22 (2016), 151-164.
- N.V. Dung, A sharp improvement of fixed point results for quasi-contractions in b-metric spaces, Miskolc Math. Notes, 21 (2020), 451-461. https://doi.org/10.18514/MMN.2020.3057
- R.E. Edwards, Functional Analysis: Theory and Applications, New York, NY: Holt, Rinehart and Winston, 1965.
- B. Fisher, A fixed point theorem for compact metric spaces, Publ. Inst. Math., 25 (1978), 193-194.
- H. Garai, L.K. Dey and T. Senapati, On Kannan-type contractive mappings, Num. Funct. Anal. Opti., 39(13) (2018), 14661476.
- R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 8 (2015), 1005-1013. https://doi.org/10.22436/jnsa.008.06.11
- H.A. Hammad and M. De la Sen, Generalized contractive mappings and related results in b-metric like spaces with an application, Symmetry, 11(5) (2019), Paper No. 667. https://doi.org/10.3390/sym11050667
-
H.A. Hammad and M. De la Sen, A solution of Fredholm integral equation by using the cyclic
${\eta}^q_s$ -rational contractive mappings technique in b-metric-like spaces, Symmetry 11(9) (2019), Paper No. 1184. https://doi.org/10.3390/sym11091184 - N. Haokip and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones, 38(4) (2019), 763-782. https://doi.org/issn.0717-6279-2019-04-0050. https://doi.org/10.22199/issn.0717-6279-2019-04-0050
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
- A. Kari, M. Rossafi, E. Marhrani and M. Aamri, θ - φ-Contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci., 2020 (2020), Article ID 5689458.
- A. Kari, M. Rossafi, E. Marhrani and M. Aamri, New fixed point theorems for θ - φ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal., 2020 (2020), Article ID 8833214.
- M.A. Khan, On fixed point theorems. Math. Japonica, 23 (1978), 201-204.
- N. Mlaiki, N. Dedovic, H. Aydi, M.G. Filipoviac, B. Bin-Mohsin and S. Radenovic, Some new observations on Geraghty and Ciric type results in b-metric spaces, Math. 7 (2019), Paper No. 643.
- Z. Mostefaoui, M. Bousselsal and J.K. Kim, Fixed point theory concerning rectangular b-metric spaces, Nonlinear Funct. Anal. Appl., 24(1) (2019), 45-59.
- H.K. Nashine, S. Shil and Z. Kadelburg, Common positive solutions for two non-linear matrix equations using fixed point results in b-metric-like spaces, Aequationes Math., 96 (2022), 17-41. https://doi.org/10.1007/s00010-021-00846-2
- S. Radenovic, T. Dosenovic, V. Ozturk and C. Dolicanin, A note on the paper: Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2287-2295. https://doi.org/10.1007/s11784-017-0416-2
- V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80(4) (1975), 325-330. https://doi.org/10.1007/BF01472580