DOI QR코드

DOI QR Code

SOME FIXED POINT THEOREMS FOR GENERALIZED KANNAN TYPE MAPPINGS IN RECTANGULAR b-METRIC SPACES

  • Rossafi, Mohamed (LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah) ;
  • Massit, Hafida (Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail)
  • Received : 2021.12.03
  • Accepted : 2022.04.12
  • Published : 2022.09.01

Abstract

This present paper extends some fixed point theorems in rectangular b-metric spaces using subadditive altering distance and establishing the existence and uniqueness of fixed point for Kannan type mappings. Non-trivial examples are further provided to support the hypotheses of our results.

Keywords

Acknowledgement

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

  1. I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.
  2. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
  3. I. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22 (2021), 153-171. https://doi.org/10.18514/MMN.2021.3173
  4. H.S. Ding, M. Imdad, S. Radenovic and J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22 (2016), 151-164.
  5. N.V. Dung, A sharp improvement of fixed point results for quasi-contractions in b-metric spaces, Miskolc Math. Notes, 21 (2020), 451-461. https://doi.org/10.18514/MMN.2020.3057
  6. R.E. Edwards, Functional Analysis: Theory and Applications, New York, NY: Holt, Rinehart and Winston, 1965.
  7. B. Fisher, A fixed point theorem for compact metric spaces, Publ. Inst. Math., 25 (1978), 193-194.
  8. H. Garai, L.K. Dey and T. Senapati, On Kannan-type contractive mappings, Num. Funct. Anal. Opti., 39(13) (2018), 14661476.
  9. R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 8 (2015), 1005-1013. https://doi.org/10.22436/jnsa.008.06.11
  10. H.A. Hammad and M. De la Sen, Generalized contractive mappings and related results in b-metric like spaces with an application, Symmetry, 11(5) (2019), Paper No. 667. https://doi.org/10.3390/sym11050667
  11. H.A. Hammad and M. De la Sen, A solution of Fredholm integral equation by using the cyclic ${\eta}^q_s$-rational contractive mappings technique in b-metric-like spaces, Symmetry 11(9) (2019), Paper No. 1184. https://doi.org/10.3390/sym11091184
  12. N. Haokip and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones, 38(4) (2019), 763-782. https://doi.org/issn.0717-6279-2019-04-0050. https://doi.org/10.22199/issn.0717-6279-2019-04-0050
  13. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
  14. A. Kari, M. Rossafi, E. Marhrani and M. Aamri, θ - φ-Contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci., 2020 (2020), Article ID 5689458.
  15. A. Kari, M. Rossafi, E. Marhrani and M. Aamri, New fixed point theorems for θ - φ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal., 2020 (2020), Article ID 8833214.
  16. M.A. Khan, On fixed point theorems. Math. Japonica, 23 (1978), 201-204.
  17. N. Mlaiki, N. Dedovic, H. Aydi, M.G. Filipoviac, B. Bin-Mohsin and S. Radenovic, Some new observations on Geraghty and Ciric type results in b-metric spaces, Math. 7 (2019), Paper No. 643.
  18. Z. Mostefaoui, M. Bousselsal and J.K. Kim, Fixed point theory concerning rectangular b-metric spaces, Nonlinear Funct. Anal. Appl., 24(1) (2019), 45-59.
  19. H.K. Nashine, S. Shil and Z. Kadelburg, Common positive solutions for two non-linear matrix equations using fixed point results in b-metric-like spaces, Aequationes Math., 96 (2022), 17-41. https://doi.org/10.1007/s00010-021-00846-2
  20. S. Radenovic, T. Dosenovic, V. Ozturk and C. Dolicanin, A note on the paper: Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2287-2295. https://doi.org/10.1007/s11784-017-0416-2
  21. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80(4) (1975), 325-330. https://doi.org/10.1007/BF01472580