DOI QR코드

DOI QR Code

VTM 정광 염배소 산물에 대한 바나듐 수침출 거동 분석 및 고농도 바나듐 용액 제조

The Water Leaching Behavior of Vanadium from a Salt-roasted VTM Concentrate and the Preparation of High-concentration Vanadium Solution

  • 박유진 (한국지질자원연구원 자원활용연구본부) ;
  • 김리나 (한국지질자원연구원 자원활용연구본부) ;
  • 김민석 (한국지질자원연구원 자원활용연구본부) ;
  • 전호석 (한국지질자원연구원 자원활용연구본부) ;
  • 정경우 (한국지질자원연구원 자원활용연구본부)
  • Park, Yujin (Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Rina (Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Min-seuk (Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Jeon, Ho-Seok (Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Chung, Kyeong Woo (Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources)
  • 투고 : 2022.03.28
  • 심사 : 2022.04.11
  • 발행 : 2022.04.30

초록

본 연구에서는 탄산나트륨(Na2CO3)을 사용하여 염배소한 함바나듐 티탄철광(VTM)으로부터 바나듐의 수침출 거동을 고찰하였다. 자력선별 된 정광과 Na2CO3를 질량비 4:1로 혼합한 후 1050 ℃, 3시간 조건에서 염배소하고 로드밀을 사용해 D50=48.79 ㎛로 분쇄하여 연구에 사용하였으며 침출 온도와 광액 농도를 수침출 영향인자로 선정하였다. 연구 결과, 온도가 25, 55, 85 ℃로 증가할수록 바나듐의 침출율은 90.4, 88.2, 83.8%로 감소하였으며 광액 농도 10, 50, 100 w/v%에 따른 바나듐 침출율은 각각 90.4, 87.0, 87.0%로 변화가 크지 않았다. 이를 바탕으로 25 ℃, 100 w/v%, 300 rpm, 1시간의 조건에서 다단 침출을 수행한 결과, 총 4단 침출 후 최종 침출액의 바나듐 농도는 16.20 g/L로 분석되었다. 따라서 다단 침출을 통해 고농도 소듐바나데이트 용액의 제조가 가능하였다.

This study investigated the water leaching behavior of vanadium in Na2CO3-roasted vanadium-bearing titaniferous magnetite (VTM) concentrate. The magnetic concentrate and Na2CO3, mixed in a mass ratio of 4:1, were roasted at 1050 ℃, kept for 3 h, and ground to a size of D50 = 48.79 ㎛ using a rod mill. The effects of leaching temperature and pulp density on water leaching were then investigated. The results show that the vanadium leaching efficiency decreased to 90.4%, 88.2%, and 83.8% as the temperature increased to 25, 55, and 85 ℃, respectively, whereas it remained almost constant 90.4%, 87.0%, and 87.0% as the pulp density increased to 10, 50, and 100 w/v%, respectively. Based on the preliminary leaching results, multi-stage leaching was conducted with the experimental conditions of 25 ℃, 100 w/v%, 300 rpm, and 1 h. The vanadium concentration in the final leaching solution was determined as 16.20 g/L after four stages of leaching. Thus, a high-concentration sodium vanadate solution was prepared by multi-stage leaching.

키워드

과제정보

본 연구는 한국지질자원연구원 기본사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)' 과제의 일환으로 수행되었습니다. 또한, 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(20216110100040, IP2021-017, 국내 바나듐함유광으로부터 바나듐광 스마트 개발 및 원료화 기술개발).

참고문헌

  1. Zhang, Q., Zhao, Y., Yuan, G., et al., 2019 : The effect of vanadium on microstructure and mechanical properties of Fe-based high-strength alloys, Results in Physics, 15, 102335.
  2. Lee, S., 2020 : A Review on Types of Vanadium Deposits and Process Mineralogical Characteristics, Journal of The Korean Society of Mineral and Energy Resources Engineers, 57(6), pp.640-651. https://doi.org/10.32390/ksmer.2020.57.6.640
  3. Li, L., Kim, S., Wang, W., et al., 2011 : A stable vanadium redox-flow battery with high energy density for large-scale energy storage, Advanced Energy Materials, 1(3), pp.394-400. https://doi.org/10.1002/aenm.201100008
  4. Vitolo, S., Seggiani, M., Filippi, S., et al., 2000 : Recovery of vanadium from heavy oil and Orimulsion fly ashes, Hydrometallurgy, 57(2), pp.141-149. https://doi.org/10.1016/S0304-386X(00)00099-2
  5. Peng, H., 2019 : A literature review on leaching and recovery of vanadium, Journal of Environmental Chemical Engineering, 7(5), 103313.
  6. Luo, L., Miyazaki, T., Shibayama, A., et al., 2003 : A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap, Minerals Engineering, 16(7), pp.665-670. https://doi.org/10.1016/S0892-6875(03)00103-1
  7. Moskalyk, R.R., Alfantazi, A.M., 2003 : Processing of vanadium: a review, Minerals Engineering, 16(9), pp.793-805. https://doi.org/10.1016/S0892-6875(03)00213-9
  8. Yang, S.Z., 2010 : Vanadium Metallurgy, pp.136, Metallurgy Industry Press, Beijing.
  9. Huang, J. H., Huang, F., Evans, L., et al., 2015 : Vanadium: Global (bio) geochemistry, Chemical Geology, 417, pp.68-89. https://doi.org/10.1016/j.chemgeo.2015.09.019
  10. Chen, D., 2019 : Annual evaluation for vanadium industry in 2018, Hebei Metallurgy, 8, pp.5-15.
  11. Boni, M., Terracciano, R., Evans, N. J., et al., 2007 : Genesis of vanadium ores in the Otavi Mountainland, Namibia, Economic Geology, 102(3), pp.441-469. https://doi.org/10.2113/gsecongeo.102.3.441
  12. Shawe, D.R., 2011 : Uranium-vanadium deposits of the Slick Rock district, Colorado. United States Geological Survey, Professional Paper, 576, pp.80.
  13. Fischer, R.P., 1975 : Vanadium resources in titaniferous magnetite deposits, U.S. Geological Survey Professional Paper, 926, p.9.
  14. Reynolds, I.M., 1985 : The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld Complex-A review and synthesis, Economic Geology, 80, pp.1089-1108. https://doi.org/10.2113/gsecongeo.80.4.1089
  15. Zhou, M.-F., Robinson, P.T., Lesher, C.M., et al., 2005 : Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China, Journal of Petrology, 46(11), pp.2253-2280. https://doi.org/10.1093/petrology/egi054
  16. Liu, C., Eleish, A., Hystad, G., et al., 2018 : Analysis and visualization of vanadium mineral diversity and distribution, Journal of Earth and Planetary Materials, 103(7), pp. 1080-1086.
  17. Kim, J. S., 2013 : Research and development for the recovery of uranium and vanadium from Korean black shale ore, Journal of the Korean Institute of Resources Recycling, 22(1), pp.3-10. https://doi.org/10.7844/KIRR.2013.22.1.3
  18. Go, B., Han, Y., Kim, S., et al., 2020 : Development of combination separation process for recovery of high-grade concentrate from Gwan-in Mine ilmenite, Journal of the Korean Society of Mineral and Energy Resources Engineers, 57(5), pp.413-420. https://doi.org/10.32390/ksmer.2020.57.5.413
  19. Kelley, K.D., Scott, C.T., Polyak, D.E., et al., 2005 : Vanadium-Critical Mineral Resources of the United States-Economic and Enrivonmental Geology and Prospects for Future Supply. Professional Paper 1802-U. USGS. pp.48.
  20. Kim, R., Kim, M. S., Lee, J. C., et al., 2021 : Optimization of Soda ash Roasting-water Leaching Conditions for Vanadium Recovery from a Vanadium-bearing Titaniferous Magnetite Ore, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.17-24. https://doi.org/10.32390/ksmer.2021.58.1.017
  21. Lee, J. C., Kim, E. Y., Chung, K. W., et al., 2021 : A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production, Journal of Materials Research and Technology.
  22. Yoon, H. S., Chae, S., Kim, C. J., et al., 2019 : Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium, Journal of the Korean Institute of Resources Recycling, 28(5), pp.42-50. https://doi.org/10.7844/KIRR.2019.28.5.42
  23. Gilligan, R., Nikoloski, A. N., 2020 : The extraction of vanadium from titanomagnetites and other sources, Minerals Engineering, 146, 106106.
  24. Zhu, X., Li, W., Tang, S., and Li, W., 2016 : Effect of Impurity Ions on Vanadium Precipitation in Vanadium-rich Solution, Journal of Mining World Express, 5, pp.28-37. https://doi.org/10.14355/mwe.2016.05.003