DOI QR코드

DOI QR Code

Sensitivity Analysis of Heat Source Parameter for Predicting Residual Stress Induced by Electron Beam Welding

스테인리스강에 대한 전자빔 용접 잔류응력 예측을 위한 열원 변수 민감도 해석

  • 박신제 (고려대학교 기계공학부) ;
  • 김훈태 (한국수력원자력 중앙연구원) ;
  • 김윤재 (고려대학교 기계공학부)
  • Received : 2022.11.19
  • Accepted : 2022.12.22
  • Published : 2022.12.30

Abstract

Accurate evaluation of residual stress is important for stress corrosion cracking assessment. In this paper, electron beam welding experiment is simulated via finite element analysis and the sensitivity of the parameters related to the combined heat source model is investigated. Predicted residual stresses arecompared with measured residual stresses. It is found that the welding efficiency affects the size of the tensile residual stress area and the magnitude of maximum longitudinal residual stress. It is also found that the parameter related to the ratio of energy distributed to the two-dimensional heat source has little effect on the size of tthe tensile residual stress area, but affects the size of the longitudinal residual stress in the center of the weld.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019M2D2A2048296).

References

  1. Bunn, M. G., Weeks, J., Holdren, J. P., MacFarlane, A. M., Pickett, S. E., Suzuki, A., and Suzuki, T., 2001, Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management.
  2. Romanato, L. S., 2011, Advantages of dry hardened cask storage over wet storage for spent nuclear fuel.
  3. Feng, Z. (Ed.)., 2005, Processes and mechanisms of welding residual stress and distortion. Elsevier.
  4. Lima, A. S., Nascimento, A. M. D., Abreu, H. F. G. D., and de Lima-Neto, P., 2005, "Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347". J. Mater. Sci., Vol. 40, No. 1, pp. 139-144. doi:https://doi.org/10.1007/s10853-005-5699-9
  5. Weglowski, M. S., Blacha, S., and Phillips, A., 2016, Electron beam welding-techniques and trends-review. Vacuum, Vol. 130, pp. 72-92. doi:https://doi.org/10.1016/j.vacuum.2016.05.004
  6. Lam, P. S., Duncan, A. J., and Sindelar, R. L., 2019, "Crack growth rate and large plate demonstration of chloride-induced stress corrosion cracking in spent nuclear fuel storage canisters," U.S. Savannah River Site, Aiken, SRNL-STI-2019-00561.
  7. Liu, C., Zhang, J., Wu, B., and Gong, S., 2012, "Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding." Materials and Design, Vol. 34, pp. 609-617. doi: https://doi.org/10.1016/j.matdes.2011.05.014
  8. Cao, J., Gharghouri, M. A., and Nash, P, 2016, "Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates." J. Mater. Process. Tech., Vol. 237, pp. 409-419. doi:https://doi.org/10.1016/j.jmatprotec.2016.06.032
  9. Liu, C., Wu, B., and Zhang, J. X., 2010, "Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding." Metall. Mater. Trans. B, Vol. 41, No. 5, pp. 1129-1138. doi:https://doi.org/10.1007/s11663-010-9408-y
  10. Cho, J. R., Conlon, K. T., and Reed, R. C., 2003, "Residual stresses in an electron beam weld of Ti-834: Characterization and numerical modeling." Metall. Mater. Trans. A, Vol. 34, No. 12, pp. 2935-2946. doi: https://doi.org/10.1007/s11661-003-0193-y
  11. Smith, D. J., Zheng, G., Hurrell, P. R., Gill, C. M., Pellereau, B. M. E., Ayres, K., ... and Kingston, E., 2014, "Measured and predicted residual stresses in thick section electron beam welded steels." Int. J. Press. Ves. Pip., Vol. 120, pp. 66-79. doi:https://doi.org/10.1016/j.ijpvp.2014.05.001
  12. Kundu, A., Bouchard, P. J., Kumar, S., Venkata, K. A., Francis, J. A., Paradowska, A., ... and Truman, C. E., 2013, "Residual stresses in P91 steel electron beam welds." Sci. Technol. Weld. Joi. Vol. 18, No. 1, pp. 70-75. doi:https://doi.org/10.1179/1362171812Y.0000000076
  13. Shen, X., Gao, K., and Dong, S., 2020, "Simulation and analysis of electron beam welding residual stress in thin-walled high-temperature alloy aeroengine structures." Int. J. Adv. Manuf. Tech. Vol. 107, No. 9, pp. 3953-3966. doi:https://doi.org/10.1007/s00170-020-05276-z
  14. Feng, G., Wang, Y., Luo, W., Hu, L., and Deng, D., 2021, "Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint." J. Mater. Res. Technol., Vol. 13, pp. 1967-1979. doi:https://doi.org/10.1016/j.jmrt.2021.05.105
  15. Lundback, A., and Runnemalm, H., 2005, "Validation of three-dimensional finite element model for electron beam welding of Inconel 718". Sci. Tech. Weld. Joi., Vol. 10, No. 6, pp. 717-724. doi:https://doi.org/10.1179/174329305X48347
  16. Ferro, P., Zambon, A., and Bonollo, F., 2005, "Investigation of electron-beam welding in wrought Inconel 706-experimental and numerical analysis." Mat. Sci. Eng. A-Struct., Vol. 392, No. 1-2, pp. 94-105. doi:https://doi.org/10.1016/j.msea.2004.10.039
  17. Li, Y., Zhao, Y., Li, Q., Wu, A., Zhu, R., and Wang, G., 2017, "Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints." Mater. Design, Vol. 114, pp. 226-233. doi: https://doi.org/10.1016/j.matdes.2016.11.083
  18. Song, T. K., Bae, H. Y., Kim, Y. J., Lee, K. S., and Park, C. Y., 2008, "Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in Nuclear power plant." Transactions of the Korean Society of Mechanical Engineers A, Vol. 32, No. 9, pp. 770-781. doi:https://doi.org/10.3795/KSME-A.2008.32.9.770
  19. Bae, H. Y., Kim, Y. J., Kim, J. H., Lee, S. H., Lee, K. S., and Park, C. Y., 2014, "Three-dimensional finite element welding residual stress analysis of penetration nozzles: I-sensitivity of analysis variables." Int. J. Press. Ves. Pip., Vol. 114, pp. 1-15. doi:https://doi.org/10.1016/j.ijpvp.2013.11.006
  20. Soh, N. H., Oh, G. J., Huh, N. S., Lee, S. H., Park, H. B., Lee, S. G., ... & Kim, Y. J. 2012. "Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles." Trans. of the KPVP, Vol. 8, No. 1, pp. 8-18. doi:https://doi.org/10.20466/KPVP.2012.8.1.008
  21. sMokhtarishirazabad, M., Simpson, C., Kabra, S., Horne, G., Palmer, I., Moffat, A., ... and Mostafavi, M., 2021, "Evaluation of fracture toughness and residual stress in AISI 316L electron beam welds." Fatigue. Fract. Eng. M, Vol. 4, No. 8, pp. 2015-2032. doi:https://doi.org/10.1111/ffe.13472s
  22. Feng, G., Wang, Y., Luo, W., Hu, L., and Deng, D., 2021, "Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint." J. Mater. Res. Technol., Vol. 13, pp. 1967-1979. doi:https://doi.org/10.1016/j.jmrt.2021.05.105