참고문헌
- Y. Shi et al., "An overview of COVID-19," J. Zhejiang Univ. B 2020 215, vol. 21, no. 5, pp. 343-360, May 2020, doi: 10.1631/JZUS.B2000083.
- T. E. Miller et al., "Clinical sensitivity and interpretation of PCR and serological COVID-19 diagnostics for patients presenting to the hospital," FASEB J., vol. 34, no. 10, pp. 13877-13884, Oct. 2020, doi: 10.1096/fj.202001700RR.
- "COVID Live - Coronavirus Statistics - Worldometer." https://www.worldometers.info/coronavirus/ (accessed Apr. 18, 2022).
- I. Blazic, B. Brkljacic, and G. Frija, "The use of imaging in COVID-19-results of a global survey by the International Society of Radiology," doi: 10.1007/s00330-020-07252-3.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Commun. ACM, vol. 60, no. 6, pp. 84-90, May 2017, doi: 10.1145/3065386.
- M. Faisal, F. Albogamy, H. Elgibreen, M. Algabri, S. A. M. Alvi, and M. Alsulaiman, "COVID-19 diagnosis using transfer-learning techniques," Intell. Autom. Soft Comput., vol. 29, no. 3, pp. 649-667, 2021, doi: 10.32604/iasc.2021.017898.
- M. Nour, Z. Comert, and K. Polat, "A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization," Appl. Soft Comput., vol. 97, no. xxxx, p. 106580, 2020, doi: 10.1016/j.asoc.2020.106580.
- X. Deng, H. Shao, L. Shi, X. Wang, and T. Xie, "A classification-detection approach of COVID-19 based on chest X-ray and CT by using keras pre-trained deep learning models," C. - Comput. Model. Eng. Sci., vol. 125, no. 2, pp. 579-596, 2020, doi: 10.32604/cmes.2020.011920.
- V. Madaan et al., "XCOVNet: Chest X-ray Image Classification for COVID-19 Early Detection Using Convolutional Neural Networks," New Gener. Comput., vol. 39, no. 3-4, pp. 583-597, 2021, doi: 10.1007/s00354-021-00121-7.
- M. Nishio, S. Noguchi, H. Matsuo, and T. Murakami, "Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods," Sci. Rep., vol. 10, no. 1, pp. 1-6, 2020, doi: 10.1038/s41598-020-74539-2.
- T. D. Pham, "Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?," Heal. Inf. Sci. Syst., vol. 9, no. 1, 2021, doi: 10.1007/s13755-020-00135-3.
- T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, "Automated detection of COVID-19 cases using deep neural networks with X-ray images," Comput. Biol. Med., vol. 121, no. April, p. 103792, 2020, doi: 10.1016/j.compbiomed.2020.103792.
- A. Abbas, M. M. Abdelsamea, and M. M. Gaber, "Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network," Appl. Intell., vol. 51, no. 2, pp. 854-864, 2021, doi: 10.1007/s10489-020-01829-7.
- C. Agarwal, S. Khobahi, D. Schonfeld, and M. Soltanalian, "CoroNet: a deep network architecture for enhanced identification of COVID-19 from chest x-ray images," vol. 1159722, no. February 2021, p. 71, 2021, doi: 10.1117/12.2580738.
- W. Kusakunniran et al., "COVID-19 detection and heatmap generation in chest x-ray images," J. Med. Imaging, vol. 8, no. S1, pp. 1-14, 2021, doi: 10.1117/1.jmi.8.s1.014001.
- C. M. Do and L. Vu, "Application of deep learning model (DeepCOVID-19) for detecting COVID-19 cases using chest x-ray images," vol. 1151112, no. August 2020, p. 37, 2020, doi: 10.1117/12.2575919.
- J. Manokaran, F. Zabihollahy, A. Hamilton-Wright, and E. Ukwatta, "Detection of COVID-19 from chest x-ray images using transfer learning," J. Med. Imaging, vol. 8, no. S1, pp. 1-12, 2021, doi: 10.1117/1.jmi.8.s1.017503.
- H. Maghdid, A. T. Asaad, K. Z. G. Ghafoor, A. S. Sadiq, S. Mirjalili, and M. K. K. Khan, "Diagnosing COVID19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms," no. April 2021, p. 26, 2021, doi: 10.1117/12.2588672.
- G. E. Dahl, T. N. Sainath, and G. E. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout," ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., pp. 8609-8613, Oct. 2013, doi: 10.1109/ICASSP.2013.6639346.
- B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning Transferable Architectures for Scalable Image Recognition," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 8697-8710, Jul. 2017, doi: 10.48550/arxiv.1707.07012.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks."
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition." [Online]. Available: http://image-net.org/challenges/LSVRC/2015/.
- F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions."
- C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning."
- G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks." [Online]. Available: https://github.com/liuzhuang13/DenseNet.
- N. Habib, M. M. Hasan, M. M. Reza, and M. M. Rahman, "Ensemble of CheXNet and VGG-19 Feature Extractor with Random Forest Classifier for Pediatric Pneumonia Detection," SN Comput. Sci., vol. 1, no. 6, pp. 1-9, 2020, doi: 10.1007/s42979-020-00373-y.
- T. Kaur and T. K. Gandhi, "Classifier Fusion for Detection of COVID-19 from CT Scans," Circuits, Syst. Signal Process., 2022, doi: 10.1007/s00034-021-01939-8.
- R. Kundu, H. Basak, P. K. Singh, A. Ahmadian, M. Ferrara, and R. Sarkar, "Fuzzy rank-based fusion of CNN models using Gompertz function for screening COVID-19 CT-scans," Sci. Rep., vol. 11, no. 1, pp. 1-12, 2021, doi: 10.1038/s41598-021-93658-y.
- T. Rahman et al., "Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images," Comput. Biol. Med., vol. 132, May 2021, doi: 10.1016/J.COMPBIOMED.2021.104319.
- M. Shams, O. Elzeki, and M. Abd Elfattah, "Chest X-ray images with three classes: COVID-19, Normal, and Pneumonia," vol. 1, 2020, doi: 10.17632/FVK7H5DG2P.1.
- hao khoong, "COVID-19 Xray Dataset (Train & Test Sets) | Kaggle." https://www.kaggle.com/khoongweihao/covid19-xraydataset-train-test-sets?select=xray_dataset_covid19 (accessed Mar. 22, 2022).
- alif rehman, "COVID-19 Chest X-ray Image Dataset | Kaggle." https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset (accessed Mar. 22, 2022).
- Rashik Rehman, "Covid_w/wo_Pneumonia Chest Xray | Kaggle." https://www.kaggle.com/rashikrahmanpritom/covidwwo-pneumonia-chest-xray (accessed Mar. 22, 2022).
- Y. Fang et al., "Sensitivity of chest CT for COVID-19: Comparison to RT-PCR," Radiology, vol. 296, no. 2, pp. E115-E117, Aug. 2020, doi: 10.1148/RADIOL.2020200432.
- Fusic, "Chest Xray for covid-19 detection | Kaggle." https://www.kaggle.com/fusicfenta/chest-xray-forcovid19-detection (accessed Mar. 22, 2022).
- M. Tan and Q. V Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."
- C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, "Rethinking the Inception Architecture for Computer Vision."
- E. Christodoulou, J. Ma, G. S. Collins, E. W. Steyerberg, J. Y. Verbakel, and B. Van Calster, "A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models," J. Clin. Epidemiol., vol. 110, pp. 12-22, Jun. 2019, doi: 10.1016/J.JCLINEPI.2019.02.004.
- Z. Zhu, X. Lian, X. Su, W. Wu, G. A. Marraro, and Y. Zeng, "From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses," Respir. Res., vol. 21, no. 1, pp. 1-14, Aug. 2020, doi: 10.1186/S12931-020-01479-W/TABLES/4.
- M. Abed Alah, S. Abdeen, and V. Kehyayan, "The first few cases and fatalities of Corona Virus Disease 2019 (COVID-19) in the Eastern Mediterranean Region of the World Health Organization: A rapid review," J. Infect. Public Health, vol. 13, no. 10, p. 1367, Oct. 2020, doi: 10.1016/J.JIPH.2020.06.009.
- R. D. Welling et al., "White paper report of the 2010 RAD-AID Conference on International Radiology for Developing Countries: Identifying sustainable strategies for imaging services in the developing world," J. Am. Coll. Radiol., vol. 8, no. 8, pp. 556-562, 2011, doi: 10.1016/j.jacr.2011.01.011.