DOI QR코드

DOI QR Code

Corrosion release behavior of alloy 690 and its application in high-temperature water with Zn injection

  • Liao, Jiapeng (China Nuclear Power Technology Research Institute) ;
  • Hu, Yousen (China Nuclear Power Technology Research Institute) ;
  • Li, Jinggang (China Nuclear Power Technology Research Institute) ;
  • Jin, Desheng (China Nuclear Power Technology Research Institute) ;
  • Meng, Shuqi (China Nuclear Power Technology Research Institute) ;
  • Ruan, Tianming (China Nuclear Power Technology Research Institute) ;
  • Hu, Yisong (China Nuclear Power Technology Research Institute) ;
  • Zhang, Ziyu (Institute of Metal Research, Chinese Academy of Sciences)
  • 투고 : 2021.05.27
  • 심사 : 2021.09.07
  • 발행 : 2022.03.25

초록

Corrosion release behavior of Alloy 690 in high-temperature water was investigated under the conditions of injected Zn concentrations of 0 ppb, 10 ppb and 50 ppb. A protective oxide film composed of Zn(FexCr1-x)2O4 and Cr2O3 was formed with Zn injection, resulting in a better corrosion resistance. In comparison with the Zn-free condition, the corrosion release rate under the Zn-injection conditions was smaller. The corrosion release inhibiting factors were 1.7 and 1.9 under the conditions of 10 ppb and 50 ppb Zn-injection respectively. A foreseen application of the corrosion and corrosion release rates has been proposed and discussed.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (U20B2011).

참고문헌

  1. J.J. Kai, M.N. Liu, The effects of heat-treatment on the carbide evolution and the chromium depletion along grain-boundary of Inconel-690 Alloy, Scripta, Metall. Mater. 23 (1989) 17-22. https://doi.org/10.1016/0036-9748(89)90085-9
  2. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758. https://doi.org/10.1016/j.actamat.2012.11.004
  3. I. Chung, M. Lee, An experimental study on fretting wear behavior of cross-contacting Inconel 690 tubes, Nucl. Eng. Des. 241 (2011) 4103-4110. https://doi.org/10.1016/j.nucengdes.2011.08.024
  4. PWR Axial Offset Anomaly (AOA) Guidelines, EPRI report TR-110070, Palo Alto, CA, 1999.
  5. S. Seo, B. Park, S.J. Kim, H.C. Shin, S.J. Lee, M. Lee, S.Y. Choi, BOTANI: high-fidelity multiphysics model for boron chemistry in CRUD deposits, Nucl. Eng. Technol. 53 (5) (2021) 1676-1685. https://doi.org/10.1016/j.net.2020.11.008
  6. M.W. Daniel, B. Richard, U. Ryuji, NPC Conference, Brighton, UK, 2016.
  7. D. Jeff, H. Dennis, K. Brian, M.G. John, S. Jeff, S. Michael, JOM 63 (2011) 64-72.
  8. B. Beverskog, The role of zinc in LWRs, in: Int. Conf. On Water Chemistry of Nuclear Reactor Systems, San francisco, 2004.
  9. J.S. Choi, S.C. Park, K.R. Park, H.Y. Yang, O.B. Yang, Effect of zinc injection on the corrosion products in nuclear fuel assembly, Nat. Sci. 5 (2013) 173-181. https://doi.org/10.4236/ns.2013.52027
  10. W.A. Byers, J. Deshon, Structure and Chemistry of PWR Crud, Nuclear Plant Chemistry Conference, San Francisco, USA, 2006.
  11. J.J. Chen, Q. Xiao, Z.P. Lu, X. K Ru, H. Peng, Q. Xiong, H.J. Li, Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments, J. Nucl. Mater. 489 (2017) 137-149. https://doi.org/10.1016/j.jnucmat.2017.03.029
  12. G.D. Han, Z.P. Lu, X.K. Ru, J.J. Chen, J.L. Zhang, T. Shoji, Properties of oxide films formed on 316L SS and model alloys with modified Ni, Cr and Si contents in high temperature water, Corrosion Sci. 106 (2016) 157-171. https://doi.org/10.1016/j.corsci.2016.02.001
  13. Pressurized Water Reactor Zinc Application Data Analysis and Evaluation of Primary Chemistry Responses, EPRI report TR-1021111, Palo Alto, CA, 2010.
  14. H. Kawamura, H. Hirano, S. Shirai, H. Takamatsu, T. Matsunaga, K. Yamaoka, K. Oshinden, H. Takiguchi, Corrosion Sci. 56 (2000) 623-637. https://doi.org/10.5006/1.3280565
  15. Zinc Acetate Impact on AOA, EPRI report TR-1001396, Palo Alto, CA, 2001.
  16. J.B. Huang, X.H. Liu, E.-H. Han, X.Q. Wu, Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water, Corrosion Sci. 53 (2011) 3254-3261. https://doi.org/10.1016/j.corsci.2011.06.001
  17. Z.Y. Hai, C.S. Xin, H. Wang, Research development of zinc water chemistry in PWRs, Corrosion Protect 39 (2018) 539-543.
  18. X.H. Liu, X.Q. Wu, E.-H. Han, Status and progress on study of corrosion behavior of structure materials in Zn-injection waters for LWRs, Corrosion Sci. Protect. Technol. 23 (2011) 287-292.
  19. S.E. Ziemniak, M. Hanson, Zinc treatment effects on corrosion behavior of Alloy 600 in high temperature hydrogenated water, Corrosion Sci. 48 (2006) 3330-3348. https://doi.org/10.1016/j.corsci.2005.11.002
  20. Procedures for Quantitative Removal of Oxide Scales Formed in High Temperature Water and Steam, NACE T-7D-167.
  21. B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corrosion Sci. 40 (1998) 337-370. https://doi.org/10.1016/S0010-938X(97)00140-6
  22. M. Loic, P. Stephane, J. Fanny, P. Michele, Corrosion of nickel-base alloys in primary medium of pressurized water reactors: new insights on the oxide growth mechanisms and kinetic modellin, Corrosion Sci. 102 (2016) 24-35. https://doi.org/10.1016/j.corsci.2015.09.001
  23. X.D. Lin, Q.J. Peng, J. Mei, E.-H. Han, W. Ke, L.J. Qiao, Z.J. Jiao, Corrosion of phase and phase boundary in proton-irradiated 308L stainless steel weld metal in simulated PWR primary water, Corrosion Sci. 165 (2020) 108401. https://doi.org/10.1016/j.corsci.2019.108401
  24. F.Q. Ning, J.B. Tan, X.Q. Wu, Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water, J. Mater. Sci. Technol. 47 (2020) 76-87. https://doi.org/10.1016/j.jmst.2020.02.004
  25. J.P. Liao, X.Q. Wu, J.B. Tan, L.C. Tang, H. Qian, Y. C Xie, Fretting corrosion fatigue of Alloy 690 in high-temperature pure water, Corrosion Sci. 133 (2018) 423-431. https://doi.org/10.1016/j.corsci.2018.01.037
  26. W.J. Kuang, X.Q. Wu, E.-H. Han, J.C. Rao, The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water, Corrosion Sci. 53 (2011) 3853-3860. https://doi.org/10.1016/j.corsci.2011.07.038
  27. F.Q. Ning, X.Q. Wu, J.B. Tan, Crevice corrosion behavior of Alloy 690 in high-temperature water, J. Nucl. Mater. 515 (2019) 326-337. https://doi.org/10.1016/j.jnucmat.2018.12.050
  28. C.C. Lin, F.R. Smith, R.L. Cowan, Effects of hydrogen water chemistry on radiation field buildup in BWRs, Nucl. Eng. Des. 166 (1996) 31-36. https://doi.org/10.1016/0029-5493(96)01196-X
  29. Y. Takeda, T. Shoji, M. Bojinov, P. Kinnunen, T. Saario, In situ and ex situ characterisation of oxide films formed on strained stainless steel surfaces in high-temperature water, Appl. Surf. Sci. 252 (2006) 8580-8588. https://doi.org/10.1016/j.apsusc.2005.11.073