• Title/Summary/Keyword: Corrosion release

Search Result 78, Processing Time 0.026 seconds

Corrosion release behavior of alloy 690 and its application in high-temperature water with Zn injection

  • Liao, Jiapeng;Hu, Yousen;Li, Jinggang;Jin, Desheng;Meng, Shuqi;Ruan, Tianming;Hu, Yisong;Zhang, Ziyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.984-990
    • /
    • 2022
  • Corrosion release behavior of Alloy 690 in high-temperature water was investigated under the conditions of injected Zn concentrations of 0 ppb, 10 ppb and 50 ppb. A protective oxide film composed of Zn(FexCr1-x)2O4 and Cr2O3 was formed with Zn injection, resulting in a better corrosion resistance. In comparison with the Zn-free condition, the corrosion release rate under the Zn-injection conditions was smaller. The corrosion release inhibiting factors were 1.7 and 1.9 under the conditions of 10 ppb and 50 ppb Zn-injection respectively. A foreseen application of the corrosion and corrosion release rates has been proposed and discussed.

The Effect of Corrosion Inhibitor on Corrosion Control of Copper Pipe and Green Water Problem

  • Lee, Ji-Eun;Lee, Hyun-Dong;Kim, Gi-Eun
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Concern about green water problem has surfaced as a serious issue in Korea. In order to solve this problem, it is necessary to research inhibition of green water and corrosion control of copper pipe in water service. This paper discovered that moderate corrosion inhibitors can solve the green water problem and copper corrosion in water service by adding the optimal concentration of corrosion inhibitors based on regulation. Firstly, in the case of phosphate based corrosion inhibitors, as dosage of the corrosion inhibitor increases from 1 mg/L to 5 mg/L, the relative effect of corrosion inhibitor declines rapidly. Secondly, except for 1 mg/L dosage of silicate based inhibitor, relative effects of the inhibitor displays a positive number depending on inhibitor concentration. The most significant result is that the amount of copper release shows a downward trend, whereas the phosphate based inhibitor accelerates copper ion release as the inhibitor dosage increases. Thirdly, as the dosage of mixed inhibitors increases to 10 mg/L, the copper release change shows a similar trend of phosphate based inhibitor. Lastly, according to the Langelier saturation index (LI), silicate based inhibitors have the most non corrosive value. Larson ratio (LR) indicates that phosphate based inhibitors are the least corrosive. Korea water index (KWI) represents that silicate based inhibitors are most effective in controlling copper pipe corrosion.

Internal Corrosion Control of Drinking Water Pipes by pH and Alkalinity Control and Corrosion Inhibitor (수질제어 및 부식억제제에 의한 상수도관의 내부부식 제어)

  • Kuh, Sungeun;Woo, Dalsik;Lee, Doojin;Kim, Juwhan;Ahn, Hyowon;Moon, Kwangsoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.215-223
    • /
    • 2006
  • The internal corrosion of water distribution systems is the main cause for the problem of the public health threat as well as water leakage in the damaged pipeline, red water, and odor and taste of the tap water. This study was examined the effect of chemicals used for pH and alkalinity control and corrosion inhibitors for producing the optimal corrosion control method. Corrosion study at different pH and alkalinity indicated that these control using alkaline chemicals was effective in corrosion rate, Fe release reduction, but examined to be increased in turbidity and corrosion-by-products(TTHMs) problems. The turbidity was slightly increased, requiring caution in controlling corrosion with $Ca(OH)_2$. At pH 9.0, TTHMs concentration is increased two times corn pared with non-control of pH. Using the pipe which had experienced 28 years of exposure, iron release was decreased with the corrosion inhibitor. Consequently, pH, Alkalinity control method using alkaline chemicals must be complemented by corrosion inhibitor application for efficient corrosion control.

Corrosion Protection from Inhibitors and Inhibitor Combinations Delivered by Synthetic Ion Exchange Compound Pigments in Organic Coatings

  • Chrisanti, S.;Ralston, K.A.;Buchheit, R.G.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.212-218
    • /
    • 2008
  • Inorganic ion exchange compounds (IECs) including hydrotalcites and bentonite clays are a well known classes of layered mixed metal hydroxides or silicates that demonstrate ion exchange properties. These compounds have a range of applications from water purification to catalyst supports. The use of synthetic versions of these compounds as environmentally friendly additives to paints for storage and release of inhibitors is a new and emerging application. In this paper, the general concept of storage and release of inhibiting ions from IEC-based particulate pigments added to organic coatings is presented. The unique aspects of the IEC structure and the ion exchange phenomenon that form the basis of the storage and release characteristic are illustrated in two examples comprising an anion exchanging hydrotalcite compound and a cation exchanging bentonite compound. Examples of the levels of corrosion protection imparted by use of these types of pigments in organic coatings applied to aluminum alloy substrates is shown. How corrosion inhibition translates to corrosion protection during accelerated exposure testing by organic coatings containing these compounds is also presented.

Influence of Citric Acid on the Metal Release of Stainless Steels

  • Mazinanian, N.;Wallinder, I. Odnevall;Hedberg, Y.S.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.166-171
    • /
    • 2015
  • Knowledge of how metal releases from the stainless steels used in food processing applications and cooking utensils is essential within the framework of human health risk assessment. A new European standard test protocol for testing metal release in food contact materials made from metals and alloys has recently been published by the Council of Europe. The major difference from earlier test protocols is the use of citric acid as the worst-case food simulant. The objectives of this study were to assess the effect of citric acid at acidic, neutral, and alkaline solution pH on the extent of metal release for stainless steel grades AISI 304 and 316, commonly used as food contact materials. Both grades released lower amounts of metals than the specific release limits when they were tested according to test guidelines. The released amounts of metals were assessed by means of graphite furnace atomic absorption spectroscopy, and changes in the outermost surface composition were determined using X-ray photoelectron spectroscopy. The results demonstrate that both the pH and the complexation capacity of the solutions affected the extent of metal release from stainless steel and are discussed from a mechanistic perspective. The outermost surface oxide was significantly enriched in chromium upon exposure to citric acid, indicating rapid passivation by the acid. This study elucidates the effect of several possible mechanisms, including complex ion- and ligand-induced metal release, that govern the process of metal release from stainless steel under passive conditions in solutions that contain citric acid.

Corrosion control of drinking water pipes by corrosion inhibitor (부식억제제에 의한 상수도관의 부식제어)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2306-2310
    • /
    • 2010
  • Corrosion is a complex series of oxidation/reduction reactions between at the water-metal surfaces and materials in which the water is stored or transported. With respect to the corrosion potential of drinking water, the primary concerns include the potential presence of toxic metals, such as lead and copper; deterioration and damage to the household plumbing, and aesthetic problems such as stained laundry, and bitter taste. This study was performed to evaluate the effects of corrosion inhibitors on corrosion rates, Fe and Cu release concentration in water distribution pipes. Decrease of corrosion rates were strongly related to phosphate corrosion inhibitors. Considering that typical corrosion processes consists of a series of electrochemical reaction at the metal surface in contact with water, corrosion rates were positively correlated with Fe release.

Concentration of elemental ions released from non-precious dental casting alloys (치과주조용 비귀금속 합금의 금속 용출 수준)

  • Sakong, Joon;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Purpose: This study was to assess the extents of the release of metals from the non-precious alloys used for dental casting by measuring the differences in the extents of the release of metals by types of alloys, pH level and elapsed time. Methods: Uniform-sized specimens(10 each) were prepared according to the Medical Device Standard of the Korea Food and Drug Administration(2010) and International Standard Organization(ISO22674, 2006), using four types of alloys(one type of Ni-Cr and one type of Co-Cr used for fixed prosthesis, and one type of Ni-Cr and one type of Co-Cr used for removable prosthesis). A total of 12 metal-release tests were performed at one-day, three-day, and two-week intervals, for up to 20 weeks. The metal ions were quantified using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: The results showed that the extent of corrosion was higher in the ascending order of Jdium-$100^{(R)}$, Bellabond-$Plus^{(R)}$, Starloy-$C^{(R)}$, and Biosil-$F^{(R)}$. The lower the pH and the longer the elapsed time were, the greater the increase in metal corrosion. At pH 2.4, the release of Ni from Jdium-$100^{(R)}$, a Ni-Cr alloy, was up to 15 times greater than the release of Co from the Co-Cr alloy from two weeks over time, indicating that the Ni-Cr alloy is more susceptible to corrosion than the Co-Cr alloy. Conclusion: It is recommended that Co-Cr alloy, which is highly resistant to corrosion, be used for making dental prosthesis with a non-precious alloy for dental casting, and that non-precious alloy prosthesis be designed in such a way as to minimize the area of its oral exposure. For patients with non-precious alloy prostheses, a test of the presence or absence of periodontal tissue inflammation or allergic reaction around the prosthesis should be performed via regular examination, and education on the good management of the prosthesis is needed.

Effects of pH, Alkalinity and Chloride on Release of Corrosion By-product in Copper Pipes (pH, 알칼리도, 염소이온이 동관의 부식 부산물 용출에 미치는 영향)

  • 김선일;곽필재;이운기;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.75-83
    • /
    • 1999
  • In this research, the has been speculation about effects of pH, alkalinity, and chloride, each of which are major factors in water for the corrosion of copper pipes frequently used as the distribution system throughout the world. It is believed that these factors release a corrosion by-product. The results show the following that the first, for each water sample of pH 7, 8 and 9, various concentrations of alkalinity at 10, 50, 100, 150 mg/L was tested. It was found that conditions of higher pH led to decreased concentrations of copper by-product. For each pH, higher alkalinity produced higher concentrations of copper by-product. the second, higher chloride concentrations led to decreased concentrations of copper by-product. Apparently this was due to the Nantokite(CuCl) formation on the inner walls of the copper pipes with the passage of time. The third, when 25, 50mg/L of chloride were added, the average decreasing rate of copper release concentration was 45.7, 66.7%, respectively.

  • PDF

Ion Release and Biocompatibility of Sintered Ni-Cr-Ti Alloy for Dental Prosthodontics (치과보철용 Ni-Cr-Ti소결체합금의 이온용출과 생체적합성)

  • Choe, Han-Cheol;Kim, Seung-Hui
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, ion release and biocompatibility of sintered Ni-Cr-Ti alloy for dental prosthodontics have been researched by corrosion and cell culture test. The microstructures of the alloys were observed by optical microscope, and corrosion behavior was investigated using potentiostat (Model PARSTAT 2273, EG&G, USA). Cell culture was carried out using hGf cell in DMEM (Welgene Inc., South Korea) supplemented with 10% fetal bovine serum (FBS) (Welgene Inc., South Korea) and antibiotic antimycotic solution (Welgene Inc., South Korea). After corrosion and cell culture test, surface morphologies were observed by field-emission scanning electron microscopy. For wettability behaviors, contact angles were measured by wettability test. As the content of Ti increased, the number of pit decreased and the corrosion resistance was improved from anodic polarization test, also, polarization resistance of samples containing Ti remarkably improved as compared with the alloy not containing Ti. The sintered alloy showed a low contact angle due to the pores formed on the surface. The addition of Ti element showed that the cell survival rate was better than that of the control group.

Nuclide Release from Penetrations in Radioactive Waste Container (방사성 폐기물 저장용기 표면의 결함으로부터 핵종유출 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.302-307
    • /
    • 1989
  • Nuclide release through penetrations in radioactive waste container is analyzed. Penetrations may result from corrosion or cracking and may be through the container material or through deposits of corrosion products. The analysis deals with the resultant nuclide release, but not with the way these penetrations occur. Numerical illustrations show that mass transport from multiple holes can be significant and may approach the mass transfer rate calculated from bare waste forms. Although partially-failed containers may present an important long-term barrier to release of radionuclides, numerous small holes on a container surface have the potential of bypassing the effectiveness of these barriers.

  • PDF