DOI QR코드

DOI QR Code

Radiation damage analysis in SiC microstructure by transmission electron microscopy

  • Idris, Mohd Idzat (The National University of Malaysia, Department of Applied Physics, Faculty of Science and Technology) ;
  • Yoshida, Katsumi (Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology) ;
  • Yano, Toyohiko (Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology)
  • 투고 : 2021.07.12
  • 심사 : 2021.09.15
  • 발행 : 2022.03.25

초록

Microstructures of monolithic high purity SiC and SiC with sintering additives after neutron irradiation to a fluence of 2.0-2.5 × 1024 n/m2 (E > 0.1 MeV) at 333-363 K and after post-irradiation annealing up to 1673 K were observed using a transmission electron microscopy. Results showed that no black spot defects or dislocation loops in SiC grains were found after the neutron irradiation for all of the specimens owing to the moderate fluence at low irradiation temperature. Thus, it is confirmed that these specimens were swelled mostly by the formation of point defects. Black spots and small dislocation loops were discovered only after the annealing process in PureBeta-SiC and CVD-SiC, where the swelling almost diminished. Anomalous-shaped YAG grains were found in SiC ceramics containing sintering additives. These grains contained dense black spots defects and might lose crystallinity after the neutron irradiation, while these defects may annihilate by recrystallization during annealing up to 1673 K. Amorphous grain boundary phase was also presented in this ceramic, and a large part of it was crystallized through post-irradiation annealing and could affect their recovery behavior.

키워드

과제정보

The study was partly supported by a university's grant (GUP-2018-154 and KRA-2018-057) and by the Japan Atomic Energy Agency through ITER-BA activity. The irradiation experiments were performed with support from the staff of the International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University.

참고문헌

  1. L.H. Rovner, G.H. Hopkins, Ceramic materials for fusion, Nucl. Technol. 29 (1976) 274. https://doi.org/10.13182/nt76-a31593
  2. G.P. Pells, Ceramic materials for fusion reactor applications, J. Nucl. Mater. 122&123 (1984) 1338. https://doi.org/10.1016/0022-3115(84)90264-2
  3. H. Bolt, Nonmetallic materials for plasma facing and structural applications in fusion reactors, Fusion Eng. Des. 22 (1993) 85. https://doi.org/10.1016/S0920-3796(05)80010-9
  4. K. Ahn, K. Joo, S. Park, Safety evaluation of silicon carbide and zircaloy-4 cladding during a large-break loss-of-coolant accident, Energies 11 (2018) 3324. https://doi.org/10.3390/en11123324
  5. M. Akiyoshi, T. Yano, Neutron-irradiation effect in ceramic evaluated from macroscopic property changes in as-irradiated and annealed specimens, Prog. Nucl. Energy 50 (2008) 567. https://doi.org/10.1016/j.pnucene.2007.11.042
  6. R.J. Price, Neutron irradiation-induced voids in β-silicon carbide, J. Nucl. Mater. 48 (1973) 47. https://doi.org/10.1016/0022-3115(73)90077-9
  7. L.L. Snead, T. Nozawa, Y. Katoh, T. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modelling, J. Nucl. Mater. 371 (2007) 329. https://doi.org/10.1016/j.jnucmat.2007.05.016
  8. R. Blackstone, E.H. Voice, The expansion of silicon carbide by neutron irradiation at high temperature, J. Nucl. Mater. 39 (1972) 319. https://doi.org/10.1016/0022-3115(71)90152-8
  9. T. Yano, T. Iseki, High-resolution electron microscopy of neutron-irradiation-induced dislocations in SiC, Phil. Mag. 62 (1990) 421. https://doi.org/10.1080/01418619008244788
  10. S. Kondo, Y. Katoh, L.L. Snead, Cavity swelling and dislocation evolution in SiC at very high temperatures, J. Nucl. Mater. 386-388 (2009) 222. https://doi.org/10.1016/j.jnucmat.2008.12.095
  11. T. Suzuki, T. Maruyama, T. Iseki, T. Mori, M. Ito, Recovery behavior in neutron irradiated β-sic, J. Nucl. Mater. 149 (1987) 334. https://doi.org/10.1016/0022-3115(87)90535-6
  12. T. Yano, T. suzuki, T. Maruyama, T. Iseki, Microstructure and annealing behavior of heavily neutron-irradiated β-SiC, J. Nucl. Mater. 155-157 (1988) 311. https://doi.org/10.1016/0022-3115(88)90261-9
  13. M.I. Idris, S. Yamazaki, K. Yoshida, T. Yano, Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing, J. Nucl. Mater. Energy. 9 (2016) 199. https://doi.org/10.1016/j.nme.2016.05.014
  14. M.I. Idris, H. Konishi, M. Imai, K. Yoshida, T. Yano, Neutron irradiation swelling of SiC and SiCf/SiC for advanced nuclear applications, Energy Procedia 71 (2015) 328. https://doi.org/10.1016/j.egypro.2014.11.886
  15. M.I. Idris, S. Yamazaki, K. Yoshida, T. Yano, Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation, J. Nucl. Mater. 465 (2015) 814. https://doi.org/10.1016/j.jnucmat.2015.07.046
  16. S. Yamazaki, M. Imai, T. Yano, Recovery of neutron-induced damage of SiC by thermal annealing up to 1400 ℃, Prog. Nucl. Energy 50 (2008) 601. https://doi.org/10.1016/j.pnucene.2007.11.046
  17. T. Yano, Y. You, K. Kanazawa, T. Kobayashi, M. Imai, K. Yoshida, S. Yamazaki, Recovery behavior of neutron-irradiation-induced point defects of high-purity β-SiC, J. Nucl. Mater. 455 (2014) 445. https://doi.org/10.1016/j.jnucmat.2014.07.068
  18. T. Pornphatdetaudom, T. Yano, K. Yoshida, Physical property changes of neutron-irradiated aluminum nitride and their recovery behavior by annealing using a step-heating dilatometer, Nucl. Mater. Energy. 16 (2018) 24. https://doi.org/10.1016/j.nme.2018.05.027
  19. A. Rueanngoen, K. Kanazawa, M. Imai, K. Yoshida, T. Yano, Analysis of recovery process of low-dose neutron irradiation-induced defects in silicon nitride-based ceramics by thermal annealing, J. Nucl. Mater. 455 (2014) 464. https://doi.org/10.1016/j.jnucmat.2014.07.066
  20. Y. Jin, K. Yoshida, Z. Li, D. Ai, T. Maruyama, T. Yano, Investigation of kinetic recovery process in low dose neutron-irradiated nuclear graphite by thermal annealing, J. Nucl. Sci. Technol. 56 (2019) 533. https://doi.org/10.1080/00223131.2019.1602570
  21. T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9×1027 n/m2, J. Nucl. Mater. 253 (1998) 78. https://doi.org/10.1016/S0022-3115(97)00331-0
  22. T. Yano, B. Matovic, Handbook of Advanced Ceramics: Advanced Ceramics for Nuclear Applications, Academic Press, USA, 2013, p. 353.
  23. D.J. Senor, G.E. Youngblood, L.R. Greenwood, D.V. Archer, D.L. Alexander, M.C. Chen, G.A. Newsome, Defect structure and evolution in silicon carbide irradiated to 1 dpa-SiC at 1100 ℃, J. Nucl. Mater. 317 (2003) 145. https://doi.org/10.1016/S0022-3115(03)00077-1
  24. Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, Microstructural development in cubic silicon carbide during irradiation at elevated temperatures, J. Nucl. Mater. 351 (2006) 228. https://doi.org/10.1016/j.jnucmat.2006.02.007
  25. T. Yano, M. Akiyoshi, K. Ichikawa, Y. Tachi, T. Iseki, Physical property change of heavily neutron-irradiated Si3N4 and SiC by thermal annealing, J. Nucl. Mater. 289 (2001) 102. https://doi.org/10.1016/S0022-3115(00)00688-7
  26. S. Kondo, Y. Katoh, L.L. Snead, Microstructural defects in SiC neutron irradiated at very high temperatures, J. Nucl. Mater. 382 (2008) 160. https://doi.org/10.1016/j.jnucmat.2008.08.013
  27. J.S. Park, Y. Katoh, A. Kohyama, J.K. Lee, J.J. Sha, H.K. Yoon, Tailoring the microstructure of hot-pressed SiC by heat treatment, J. Nucl. Mater. 329-333 (2004) 558. https://doi.org/10.1016/j.jnucmat.2004.04.117
  28. T. Koyanagi, Microstructural analysis of secondary phases in silicon carbide fabricated with SiC nano-powder and sintering additive, Ceram. Mater. Energy App. 32 (2011) 53.
  29. H. Konishi, M.I. Idris, M. Imai, K. Yoshida, T. Yano, Neutron irradiation effects of oxide sintering additives for SiCf/SiC composites, Energy Procedia 71 (2015) 306. https://doi.org/10.1016/j.egypro.2014.11.883
  30. R.J.M. Konings, K. Bakker, J.G. Boshoven, R. Conrad, H. Hein, The influence of neutron irradiation on the microstructure of Al2O3, MgAl2O4, Y3Al5O12 and CeO2, J. Nucl. Mater. 254 (1998) 135. https://doi.org/10.1016/S0022-3115(97)00355-3
  31. G.F. Hurley, J.M. Bunch, Swelling and thermal diffusivity changes in neutron-irradiated ceramics, Am. Ceram. Soc. Bull. 59 (1980) 456.
  32. F.W. Clinard Jr., G.F. Hurley, R.A. Youngman, L.W. Hobbs, The effect of elevated-temperature neutron irradiation on fracture toughness of ceramics, J. Nucl. Mater. 133&134 (1985) 701.