DOI QR코드

DOI QR Code

GYAGG/6LiF composite scintillation screen for neutron detection

  • Fedorov, A. (Institute for Nuclear Problems of Belarus State University) ;
  • Komendo, I. (NRC "Kurchatov Institute") ;
  • Amelina, A. (NRC "Kurchatov Institute") ;
  • Gordienko, E. (NRC "Kurchatov Institute") ;
  • Gurinovich, V. (ATOMTEX SPE) ;
  • Guzov, V. (ATOMTEX SPE) ;
  • Dosovitskiy, G. (NRC "Kurchatov Institute") ;
  • Kozhemyakin, V. (ATOMTEX SPE) ;
  • Kozlov, D. (Institute for Nuclear Problems of Belarus State University) ;
  • Lopatik, A. (ATOMTEX SPE) ;
  • Mechinsky, V. (Institute for Nuclear Problems of Belarus State University) ;
  • Retivov, V. (NRC "Kurchatov Institute") ;
  • Smyslova, V. (NRC "Kurchatov Institute" - IREA) ;
  • Zharova, A. (NRC "Kurchatov Institute" - IREA) ;
  • Korzhik, M. (Institute for Nuclear Problems of Belarus State University)
  • Received : 2021.05.21
  • Accepted : 2021.09.22
  • Published : 2022.03.25

Abstract

Composite scintillation screens on a base of Gd1.2Y1.8Ga2.5Al2.5O12:Ce (GYAGG) scintillator have been evaluated for neutron detection. Besides the powdered scintillator, the composite includes 6LiF particles; both are merged with a binder and deposited onto the light-reflecting aluminum substrate. Results obtained demonstrates that screens are suitable for use with a silicon photomultiplier readout to create a prospective solution for a compact and low-cost thermal neutron sensor. Composite GYAGG/6LiF scintillation screen shows a pretty matched sensitivity and γ-background rejection with a widely used ZnS/6LiF screens however, possesses forty times faster response.

Keywords

Acknowledgement

This work was supported by Russian Federation Government (grant number 14.W03.31.0004). Shared analytical facilities of NRC "Kurchatov institute" - IREA is acknowledged for providing the equipment for materials analysis.

References

  1. V.I. Mikerov, I.A. Zhitnik, J.N. Barmako, E.P. Bogolubov, Prospects for efficient detectors for fast neutron imaging, Appl. Radiat. Isot. 61 (2004) 529-535. https://doi.org/10.1016/j.apradiso.2004.03.078
  2. R. Zboray, R. Adams, M. Morgano, Qualification and development of fast neutron imaging scintillator screens, Nucl. Instrum. Methods Phys. Res. A. 930 (2019) 142-150. https://doi.org/10.1016/j.nima.2019.03.078
  3. N. Kardjilov, M. Dawson, A. Hilger, A highly adaptive detector system for high resolution neutron imaging, Nucl. Instrum. Methods Phys. Res. A. 651 (2011) 95-99. https://doi.org/10.1016/j.nima.2011.02.084
  4. A. Osovizky, K. Pritchard, J. Ziegler, et al., LiF:ZnS(Ag) mixture optimization for a highly efficient ultrathin cold neutron detector, IEEE Trans. Nucl. Sci. 65 (2018) 1025-1032. https://doi.org/10.1109/TNS.2018.2809567
  5. Y. Yehuda-Zada, K. Pritchard, J.B. Ziegler, et al., Optimization of 6LiF:ZnS(Ag) scintillator light yield using GEANT4, Nucl. Instrum. Methods Phys. Res. A 892 (2018) 59-69. https://doi.org/10.1016/j.nima.2018.02.099
  6. ZnS (Ag), Zinc sulfide scintillation material. Bicron data sheet, Available from: http://www.hep.ph.ic.ac.uk/fets/pepperpot/docs+papers/zns_602.pdf.
  7. NaI(Tl), Polyscin NaI(Tl), Sodium iodide scintillation material. Saint Gobain data sheet, Available from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/sodium-iodide-material-data-sheet_0.pdf.
  8. P.G. Kontz, G.F. Keepin, Zn(S) Phosphor mixtures for neutron scintillation counting, Los Alamos CIC-14 report reproduction copy LA-1663 (1954) 17.
  9. V.B. Mikhailik, et al., Investigation of luminescence and scintillation properties of ZnS-Ag/6liF scintillator in the 7-295 K temperature range, J. Lumin. 134 (2013) 63-66. https://doi.org/10.1016/j.jlumin.2012.09.013
  10. A. Osovizky, K. Pritchard, Y. Yehuda-Zada, et al., Selection of silicon photomultipliers for a 6LiF:ZnS(Ag) scintillator based cold neutron detector, J. Phys. Commun. 2 (2018), 045009. https://doi.org/10.1088/2399-6528/aab381
  11. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems, Springer, 2017.
  12. J. Ueda, S. Tanabe, Review of luminescent properties of Ce3+-doped garnet phosphors: new insight into the effect of crystal and electronic structure, Opt. Mater. X. 1 (2019) 100018-100037.
  13. W.M. Higgins, J. Glodo, E. Van Loef, M. Klugerman, Bridgman growth of LaBr3: Ce and LaCl3: Ce crystals for high-resolution gamma-ray spectrometers, J. Cryst. Growth 287 (2006) 239. https://doi.org/10.1016/j.jcrysgro.2005.11.020
  14. W.M. Higgins, A. Churilov, E. Van Loef, J. Glodo, Crystal growth of large diameter LaBr3: Ce and CeBr3, J. Cryst. Growth 310 (2008) 2085. https://doi.org/10.1016/j.jcrysgro.2007.12.041
  15. N.J. Cherepy, G. Hull, A.D. Drobshoff, S.A. Payne, Strontium and barium iodide high light yield scintillators, Appl. Phys. Lett. 92 (2008), 083508. https://doi.org/10.1063/1.2885728
  16. Y. Yokota, K. Nishimoto, S. Kurosawa, D. Totsuka, Crystal growth of Eu: SrI2 single crystals by micro-pulling-down method and the scintillation properties, J. Cryst. Growth 375 (2013) 49. https://doi.org/10.1016/j.jcrysgro.2013.03.049
  17. K. Kamada, et al., 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12, J. Cryst. Growth 352 (2012) 88-90. https://doi.org/10.1016/j.jcrysgro.2011.11.085
  18. K. Kamada, et al., Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties, Opt. Mater. 36 (2014) 1942-1945. https://doi.org/10.1016/j.optmat.2014.04.001
  19. M. Korzhik, V. Alenkov, O. Buzanov, et al., Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5-Y0.5) 3Al2Ga3O12:Ce,Mg, CrystEngComm 22 (2020) 2502-2507. https://doi.org/10.1039/d0ce00105h
  20. M. Korzhik, A. Boscovich, A. Fedorov, et al., The scintillation mechanisms in Ce and Tb doped (GdxY1-x) Al2Ga3O12 quaternary garnet structure crystalline ceramics, J. Lumin. 234 (2021) 117933. https://doi.org/10.1016/j.jlumin.2021.117933
  21. Chewpraditkul Weerapong, Scintillation characteristics of Mg2+-codoped Y0.8Gd2.2Al2Ga3O12:Ce single crystal, in: Presented at SCINT2019, 29 September-4 October 2019 (Sendai, Japan).
  22. M. Korjik, V. Alenkov, A. Borisevich, et al., Significant improvement of GAGG: Ce based scintillation detector performance with temperature decrease, Nucl. Instr. and Meth. in Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 871 (2017) 42-46. https://doi.org/10.1016/j.nima.2017.07.045
  23. G. Dosovitskiy, P. Karpyuk, E. Gordienko, et al., Neutron detection by Gd-loaded garnet ceramic scintillators, Radiat. Meas. 126 (2019) 106133. https://doi.org/10.1016/j.radmeas.2019.106133
  24. M. Korzhik, Ce doped garnet structure crystalline scintillation materials for HEP instrumentation, J. Inst. Met. 15 (2020) C08001.
  25. M. Korzhik, et al., Compact and effective detector of the fast neutrons on a base of Ce doped Gd3Al2Ga3O12 scintillation crystal, IEEE Trans. Nucl. Sci. 66 (2018) 536-540. https://doi.org/10.1109/tns.2018.2888495
  26. M.P. Taggart, M. Nakohostin, P.J. Sellin, Investigation into the potential of GAGG:Ce as a neutron detector, Nucl. Instrum. Methods Phys. Res. A 931 (2019) 121-126. https://doi.org/10.1016/j.nima.2019.04.009
  27. A. Fedorov, V. Gurinovich, V. Guzov, et al., Sensitivity of GAGG based scintillation neutron detector with SiPM readout, Nucl. Eng. Tech. 52 (2020) 2306-2312. https://doi.org/10.1016/j.net.2020.03.012
  28. TDR 1100-11 Epoxy Adhesive, Advanced materials technical datasheet, Available from: https://us.aralditeadhesives.com/us/adhesives/request-a-tds/228-tdr-1100-11-us-e/file.html.
  29. E. Gordienko, A. Fedorov, E. Radiuk, et al., Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield, Opt. Mater. 78 (2018) 312-318. https://doi.org/10.1016/j.optmat.2018.02.045
  30. Lithium-6 based screens for detection and imaging of thermal neutrons. Scintacor data sheet, Available from: https://scintacor.com/wp-content/uploads/2015/09/Datasheet-Neutron-Screens-High-Res.pdf.