Acknowledgement
This work was supported by Russian Federation Government (grant number 14.W03.31.0004). Shared analytical facilities of NRC "Kurchatov institute" - IREA is acknowledged for providing the equipment for materials analysis.
References
- V.I. Mikerov, I.A. Zhitnik, J.N. Barmako, E.P. Bogolubov, Prospects for efficient detectors for fast neutron imaging, Appl. Radiat. Isot. 61 (2004) 529-535. https://doi.org/10.1016/j.apradiso.2004.03.078
- R. Zboray, R. Adams, M. Morgano, Qualification and development of fast neutron imaging scintillator screens, Nucl. Instrum. Methods Phys. Res. A. 930 (2019) 142-150. https://doi.org/10.1016/j.nima.2019.03.078
- N. Kardjilov, M. Dawson, A. Hilger, A highly adaptive detector system for high resolution neutron imaging, Nucl. Instrum. Methods Phys. Res. A. 651 (2011) 95-99. https://doi.org/10.1016/j.nima.2011.02.084
- A. Osovizky, K. Pritchard, J. Ziegler, et al., LiF:ZnS(Ag) mixture optimization for a highly efficient ultrathin cold neutron detector, IEEE Trans. Nucl. Sci. 65 (2018) 1025-1032. https://doi.org/10.1109/TNS.2018.2809567
- Y. Yehuda-Zada, K. Pritchard, J.B. Ziegler, et al., Optimization of 6LiF:ZnS(Ag) scintillator light yield using GEANT4, Nucl. Instrum. Methods Phys. Res. A 892 (2018) 59-69. https://doi.org/10.1016/j.nima.2018.02.099
- ZnS (Ag), Zinc sulfide scintillation material. Bicron data sheet, Available from: http://www.hep.ph.ic.ac.uk/fets/pepperpot/docs+papers/zns_602.pdf.
- NaI(Tl), Polyscin NaI(Tl), Sodium iodide scintillation material. Saint Gobain data sheet, Available from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/sodium-iodide-material-data-sheet_0.pdf.
- P.G. Kontz, G.F. Keepin, Zn(S) Phosphor mixtures for neutron scintillation counting, Los Alamos CIC-14 report reproduction copy LA-1663 (1954) 17.
- V.B. Mikhailik, et al., Investigation of luminescence and scintillation properties of ZnS-Ag/6liF scintillator in the 7-295 K temperature range, J. Lumin. 134 (2013) 63-66. https://doi.org/10.1016/j.jlumin.2012.09.013
- A. Osovizky, K. Pritchard, Y. Yehuda-Zada, et al., Selection of silicon photomultipliers for a 6LiF:ZnS(Ag) scintillator based cold neutron detector, J. Phys. Commun. 2 (2018), 045009. https://doi.org/10.1088/2399-6528/aab381
- P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems, Springer, 2017.
- J. Ueda, S. Tanabe, Review of luminescent properties of Ce3+-doped garnet phosphors: new insight into the effect of crystal and electronic structure, Opt. Mater. X. 1 (2019) 100018-100037.
- W.M. Higgins, J. Glodo, E. Van Loef, M. Klugerman, Bridgman growth of LaBr3: Ce and LaCl3: Ce crystals for high-resolution gamma-ray spectrometers, J. Cryst. Growth 287 (2006) 239. https://doi.org/10.1016/j.jcrysgro.2005.11.020
- W.M. Higgins, A. Churilov, E. Van Loef, J. Glodo, Crystal growth of large diameter LaBr3: Ce and CeBr3, J. Cryst. Growth 310 (2008) 2085. https://doi.org/10.1016/j.jcrysgro.2007.12.041
- N.J. Cherepy, G. Hull, A.D. Drobshoff, S.A. Payne, Strontium and barium iodide high light yield scintillators, Appl. Phys. Lett. 92 (2008), 083508. https://doi.org/10.1063/1.2885728
- Y. Yokota, K. Nishimoto, S. Kurosawa, D. Totsuka, Crystal growth of Eu: SrI2 single crystals by micro-pulling-down method and the scintillation properties, J. Cryst. Growth 375 (2013) 49. https://doi.org/10.1016/j.jcrysgro.2013.03.049
- K. Kamada, et al., 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12, J. Cryst. Growth 352 (2012) 88-90. https://doi.org/10.1016/j.jcrysgro.2011.11.085
- K. Kamada, et al., Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties, Opt. Mater. 36 (2014) 1942-1945. https://doi.org/10.1016/j.optmat.2014.04.001
- M. Korzhik, V. Alenkov, O. Buzanov, et al., Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5-Y0.5) 3Al2Ga3O12:Ce,Mg, CrystEngComm 22 (2020) 2502-2507. https://doi.org/10.1039/d0ce00105h
- M. Korzhik, A. Boscovich, A. Fedorov, et al., The scintillation mechanisms in Ce and Tb doped (GdxY1-x) Al2Ga3O12 quaternary garnet structure crystalline ceramics, J. Lumin. 234 (2021) 117933. https://doi.org/10.1016/j.jlumin.2021.117933
- Chewpraditkul Weerapong, Scintillation characteristics of Mg2+-codoped Y0.8Gd2.2Al2Ga3O12:Ce single crystal, in: Presented at SCINT2019, 29 September-4 October 2019 (Sendai, Japan).
- M. Korjik, V. Alenkov, A. Borisevich, et al., Significant improvement of GAGG: Ce based scintillation detector performance with temperature decrease, Nucl. Instr. and Meth. in Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 871 (2017) 42-46. https://doi.org/10.1016/j.nima.2017.07.045
- G. Dosovitskiy, P. Karpyuk, E. Gordienko, et al., Neutron detection by Gd-loaded garnet ceramic scintillators, Radiat. Meas. 126 (2019) 106133. https://doi.org/10.1016/j.radmeas.2019.106133
- M. Korzhik, Ce doped garnet structure crystalline scintillation materials for HEP instrumentation, J. Inst. Met. 15 (2020) C08001.
- M. Korzhik, et al., Compact and effective detector of the fast neutrons on a base of Ce doped Gd3Al2Ga3O12 scintillation crystal, IEEE Trans. Nucl. Sci. 66 (2018) 536-540. https://doi.org/10.1109/tns.2018.2888495
- M.P. Taggart, M. Nakohostin, P.J. Sellin, Investigation into the potential of GAGG:Ce as a neutron detector, Nucl. Instrum. Methods Phys. Res. A 931 (2019) 121-126. https://doi.org/10.1016/j.nima.2019.04.009
- A. Fedorov, V. Gurinovich, V. Guzov, et al., Sensitivity of GAGG based scintillation neutron detector with SiPM readout, Nucl. Eng. Tech. 52 (2020) 2306-2312. https://doi.org/10.1016/j.net.2020.03.012
- TDR 1100-11 Epoxy Adhesive, Advanced materials technical datasheet, Available from: https://us.aralditeadhesives.com/us/adhesives/request-a-tds/228-tdr-1100-11-us-e/file.html.
- E. Gordienko, A. Fedorov, E. Radiuk, et al., Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield, Opt. Mater. 78 (2018) 312-318. https://doi.org/10.1016/j.optmat.2018.02.045
- Lithium-6 based screens for detection and imaging of thermal neutrons. Scintacor data sheet, Available from: https://scintacor.com/wp-content/uploads/2015/09/Datasheet-Neutron-Screens-High-Res.pdf.