Acknowledgement
This work was supported by the Technology development Program (S3025098) funded by the Ministry of SMEs and Startups(MSS, Korea).
References
- R. Girshick, J. Donahue, T. Darrell, and J. Malik. "Rich feature hierarchies for accurate object detection and semantic segmentation", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580-587, 2014. doi: https://doi.org/10.1109/CVPR.2014.81
- Ross Girshick. "Fast R-CNN", In IEEE/CVF International Conference on Computer Vision(ICCV), pp. 1440-1448, 2015. doi: https://doi.org/10.1109/ICCV.2015.169
- Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", In Advances in Neural Information Processing Systems 28, 2015. doi: https://doi.org/10.1109/TPAMI.2016.2577031
- Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. "You Only Look Once: Unified, Real-Time Object Detection", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016. doi: https://doi.org/10.1109/CVPR.2016.91
- Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. "SSD: Single Shot MultiBox Detector", In European Conference on Computer Vision, pp 21-37, 2016. doi: https://doi.org/10.1007/978-3-319-46448-0_2
- Jan Hosang, Rodrigo Benenson, Bernt Schiele. "Learning non- maximum suppression", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4507-4515, 2017. doi: https://doi.org/10.1109/CVPR.2017.685
- Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection", arXiv preprint arXiv:2004.10934, 2020. doi: https://doi.org/10.48550/arXiv.2004.10934
- Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh. "CSPNet: A New Backbone that can Enhance Learning Capability of CNN", In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 390-391, 2020. doi: https://doi.org/10.1109/CVPRW50498.2020.00203
- Eun-seop Yu, Approach of object recognition from image format engineering drawings using deep learning, Department of Precision Mechanical Engineering Graduate School, Kyungpook National University Daegu, Korea, 2019.
- Luis Perez, Jason Wang. "The Effectiveness of Data Augmentation in Image Classification using Deep Learning", Convolutional Neural Networks Vis. Recognit. 11:1-8. 2017. doi: https://doi.org/10.48550/arXiv.1712.04621
- Mate Kisantal, Zbigniew Wojna, Jakub Murawski, Jacek Naruniec, Kyunghyun Cho. "Augmentation for Small Object Detection", In arXiv preprint arXiv:1902.07296, 2019. doi: https://doi.org/10.5121/csit.2019.91713
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. "Attention Is All You Need", Advances in Neural Information Processing Systems, 30, 2017.
- Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon. "CBAM: Convolutional Block Attention Module", In Proceedings of European Conference on Computer Vision, pp.3-19, 2018. doi: https://doi.org/10.1007/978-3-030-01234-2_1
- Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, Xiang Bai. "Robust Scene Text Recognition with Automatic Rectification", In IEEE Conference on Computer Vision and Pattern Recognition, pp. 4168-4176, 2016. doi: https://doi.org/10.1109/CVPR.2016.452
- Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park, Dongyoon Han, Sangdoo Yun, Seong Joon Oh, Hwalsuk Lee, "What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis", In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4715-4723, 2019. doi: https://doi.org/10.1109/ICCV.2019.00481