과제정보
The authors thank the esteemed reviewers for the valuable suggestions to improve the quality of the results.
참고문헌
- C. Bardaro and R. Ceppitelli, Applications of generalized of Knaster-Kuratowski-Mazurkiezicz theorem to variational inequalities, J. Math. Anal. Appl., 137(1) (1989), 46-58. https://doi.org/10.1016/0022-247X(89)90272-2
- A. Behera and P.K. Das, Variational inequality problems in H-spaces, Int. J. Math. Math. Sci., article 78545 (2006), 1-18.
- A. Behera and G.K. Panda, Generalized variational-type inequality in Hausdorff topological vector space, Indian J. Pure Appl. Math., 28(3) (1997), 343-349.
- P.K. Das, An iterative method for T-η-invex function in Hilbert space and coincidence lifting index theorem for lifting function and covering maps, Advances Nonlinear Var. Ineq., 13(2) (2010), 11-36.
- P.K. Das, An iterative method for (AGDDVIP) in Hibert space and the homology theory to study the (GDCPn) in Riemannian n-manifolds in the presence of fixed point inclusion, European J. Pure Appl. Math., 4(4) (2011) 340-360.
- P.K. Das and P. Baliarsingh, Involutory difference operator and jth difference operator, PanAmerican Math. J., 30(4) (2020), 53-62.
- P.K. Das and A. Behera, An application of coincidence lifting index theorem in (GHV IP) and the variable step iterative method for nonsmooth (Tη; ξθ)-invex function, Advances Nonlinear Var. Ineq., 14 (2011), 73-94.
- P.K. Das and S.K. Mohanta, Generalized vector variational inequality problem, generalized vector complementarity problem in Hilbert spaces, Riemannian n-manifold, 𝕊n and ordered topological vector spaces: A study using fixed point theorem and homotopy function, Advances Nonlinear Var. Ineq., 12(2) (2009), 37-47.
- F. Giannessi, Vector variational inequalities and vector equilibria, Wiley, New York, 1980.
- A. Nagurney and D. Zhang, Projected dynamical systems and variational inequalities with applications, Springer Science, 1996.
- G.C. Nayak and P.K. Das, Generalization of Minty's lemma for multilinear maps, Advances Nonlinear Var. Ineq., 18(2) (2015), 1-8.
- M.V. Solodov and B.F. Svaiter, A new projection method for variational inequality problems, SIAM J. Cont. Optim 37(3) (1997), 765-776. https://doi.org/10.1137/S0363012997317475
- G. Stampachchia, Formes bilineaires coercivities sur les ensembles convexes, Academie des Sciences de Paris, 258 (1964), 4413-4416.
- Z. Zuo, Fixed point theorems for mean nonexpansive mappings in Banach spaces, Abst. Appl. Anal., (2014), Article ID: 746291, 1-6.