• Title/Summary/Keyword: f-projection operator

Search Result 14, Processing Time 0.023 seconds

ON STUDY OF f-APPROXIMATION PROBLEMS AND σ-INVOLUTORY VARIATIONAL INEQUALITY PROBLEMS

  • Mitra, Siddharth;Das, Prasanta Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2022
  • The purpose of the paper is to define f-projection operator to develop the f-projection method. The existence of a variational inequality problem is studied using fixed point theorem which establishes the existence of f-projection method. The concept of ρ-projective operator and σ-involutory operator are defined with suitable examples. The relation in between ρ-projective operator and σ-involutory operator are shown. The concept of σ-involutory variational inequality problem is defined and its existence theorem is also established.

NOTES ON THE BERGMAN PROJECTION TYPE OPERATOR IN ℂn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2006
  • In this paper, we will define the Bergman projection type operator Pr and find conditions on which the operator Pr is bound-ed on $L^p$(B, dv). By using the properties of the Bergman projection type operator Pr, we will show that if $f{\in}L_a^p$(B, dv), then $(1-{\parallel}{\omega}{\parallel}^2){\nabla}f(\omega){\cdot}z{\in}L^p(B,dv)$. We will also show that if $(1-{\parallel}{\omega}{\parallel}^2)\; \frac{{\nabla}f(\omega){\cdot}z}{},\;{\in}L^p{B,\;dv),\;then\;f{\in}L_a^p(B,\;dv)$.

NOTES ON BERGMAN PROJECTION TYPE OPERATOR RELATED WITH BESOV SPACE

  • CHOI, KI SEONG
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • Let Qf be the maximal derivative of f with respect to the Bergman metric $b_B$. In this paper, we will find conditions such that $(1-{\parallel}z{\parallel})^s(Qf)^p(z)$ is bounded on B. We will also find conditions such that Bergman projection type operator $P_r$ is bounded operator from $L^p(B,d{\mu}_r)$ to the holomorphic Besov p-space Bs $B^s_p(B)$ with weight s.

POSITIVE INTERPOLATION ON Ax = y AND AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.259-265
    • /
    • 2009
  • Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. Let x and y be vectors in $\mathcal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE$ = $EP_x$ for each E ${\in}\;\mathcal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\mathcal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and A ${\geq}$ 0. (2) sup ${\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}:E{\in}\mathcal{L}}$ < ${\infty}$ < x, y > ${\geq}$ 0. Let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto $\overline{rangeX}$. If PE = EP for each E ${\in}\;\mathcal{L}$, then the following are equivalent: (1) sup ${\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}:f{\in}\mathcal{H},E{\in}\mathcal{L}}$ < ${\infty}$ and < Xf, Yf > ${\geq}$ 0 for all f in H. (2) There exists a positive operator A in Alg$\mathcal{L}$ such that AX = Y.

EQUATIONS AX = Y AND Ax = y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho;Park, Dong-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.399-411
    • /
    • 2006
  • Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. Let P be the projection onto $\frac\;{R(X)}$, where RX is the range of X. If PE = EP for each $E\;\in\;L$, then there exists an operator A in AlgL such that AX = Y if and only if $$sup\{{\parallel}E^{\bot}Yf{\parallel}/{\parallel}E^{\bot}Xf{\parallel}\;:\;f{\in}H,\; E{\in}L}=K\;<\;\infty$$ Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel} = K.$ Let x and y be vectors in H and let $P_x$ be the projection onto the singlely generated space by x. If $P_xE = EP_x$ for each $E\inL$, then the assertion that there exists an operator A in AlgL such that Ax = y is equivalent to the condition $$K_0\;:\;=\;sup\{{\parallel}E^{\bot}y{\parallel}/{\parallel}E^{\bot}x\;:\;E{\in}L}=<\;\infty$$ Moreover, we may choose an operator A such that ${\parallel}A{\parallel} = K_0$ whose norm is $K_0$ under this case.

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

A REMARK ON SOME INEQUALITIES FOR THE SCHATTEN p-NORM

  • HEDAYATIAN, K.;BAHMANI, F.
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.9-23
    • /
    • 2002
  • For a closed densely defined linear operator T on a Hilbert space H, let ${\prod}$ denote the function which corresponds to T, the orthogonal projection from $H{\oplus}H$ onto the graph of T. We extend some ordinary norm ineqralites comparing ${\parallel}{\Pi}(A)-{\Pi}(B){\parallel}$ and ${\parallel}A-B{\parallel}$ to the Schatten p-norm where A and B are bounded operators on H.

  • PDF

NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Jo, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.329-334
    • /
    • 2008
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, the following is proved: Let $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$ and let X and Y be operators acting on a Hilbert space H. Let P be the projection onto the $\overline{rangeX}$. If PE = EP for each E ${\in}$ $\mathcal{L}$, then the following are equivalent: (1) sup ${{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}}:f{\in}\mathcal{H},\;E{\in}\mathcal{L}}$ < ${\infty},\;\overline{rangeY}\;{\subset}\;\overline{rangeX}$, and there is a bounded operator T acting on $\mathcal{H}$ such that < Xf, Tg >=< Yf, Xg >, < Tf, Tg >=< Yf, Yg > for all f and gin $\mathcal{H}$ and $T^*h$ = 0 for h ${\in}\;{\overline{rangeX}}^{\perp}$. (2) There is a normal operator A in AlgL such that AX = Y and Ag = 0 for all g in range ${\overline{rangeX}}^{\perp}$.

SKEW-ADJOINT INTERPOLATION ON Ax-y IN $ALG\mathcal{L}$

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$, be the projection onto sp(x). If $P_xE=EP_x$ for each $ E \in \cal{L}$ then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in ($sp(x)^\perp$) and $A=-A^\ast$. (2) (equation omitted)

  • PDF

NOTE ON THE OPERATOR ${\hat{P}}$ ON Lp(∂D)

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • Let ${\partial}D$ be the boundary of the open unit disk D in the complex plane and $L^p({\partial}D)$ the class of all complex, Lebesgue measurable function f for which $\{\frac{1}{2\pi}{\int}_{-\pi}^{\pi}{\mid}f(\theta){\mid}^pd\theta\}^{1/p}<{\infty}$. Let P be the orthogonal projection from $L^p({\partial}D)$ onto ${\cap}_{n<0}$ ker $a_n$. For $f{\in}L^1({\partial}D)$, ${\hat{f}}(z)=\frac{1}{2\pi}{\int}_{-\pi}^{\pi}P_r(t-\theta)f(\theta)d{\theta}$ is the harmonic extension of f. Let ${\hat{P}}$ be the composition of P with the harmonic extension. In this paper, we will show that if $1, then ${\hat{P}}:L^p({\partial}D){\rightarrow}H^p(D)$ is bounded. In particular, we will show that ${\hat{P}}$ is unbounded on $L^{\infty}({\partial}D)$.

  • PDF