• Title/Summary/Keyword: projective variational inequalities

Search Result 2, Processing Time 0.021 seconds

ON STUDY OF f-APPROXIMATION PROBLEMS AND σ-INVOLUTORY VARIATIONAL INEQUALITY PROBLEMS

  • Mitra, Siddharth;Das, Prasanta Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2022
  • The purpose of the paper is to define f-projection operator to develop the f-projection method. The existence of a variational inequality problem is studied using fixed point theorem which establishes the existence of f-projection method. The concept of ρ-projective operator and σ-involutory operator are defined with suitable examples. The relation in between ρ-projective operator and σ-involutory operator are shown. The concept of σ-involutory variational inequality problem is defined and its existence theorem is also established.

PROJECTION METHODS FOR RELAXED COCOERCIVE VARIATION INEQUALITIES IN HILBERT SPACES

  • Su, Yongfu;Zhang, Hong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.431-440
    • /
    • 2009
  • In this paper, we introduce and consider a new system of relaxed cocoercive variational inequalities involving three different operators and the concept of projective nonexpansive mapping. Base on the projection technique, we suggest two kinds of new iterative methods for the approximate solvability of this system. The results presented in this paper extend and improve the main results of [S.S. Chang, H.W.J. Lee, C.K. Chan, Generalized system for relaxed co coercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334] and [Z. Huang, M. Aslam Noor, An explicit projection method for a system of nonlinear variational inequalities with different ($\gamma,r$)-cocoercive mappings, Appl. Math. Comput. (2007), doi:10.1016/j.amc.2007.01.032].

  • PDF