Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT. (NRF-2020R1A2C110245), and also by the BK21 FOUR (Fostering Outstanding Universities for Research) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF5199990614253). Also all authors thank to Samoh Pharm Co., Ltd to provide S-adenosylmethionine for this research.
References
- McGill MR, Jaeschke H. 2013. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res. 30: 2174-2187. https://doi.org/10.1007/s11095-013-1007-6
- Khodayar MJ, et al. 2018. Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomed. Pharmacother. 103: 1436-1445. https://doi.org/10.1016/j.biopha.2018.04.154
- Roh T, et al. 2018. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury. Food. Chem. Toxicol. 114: 11-22. https://doi.org/10.1016/j.fct.2018.02.017
- Burcham PC, Harman AW. 1991. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J. Biol. Chem. 266: 5049-5054. https://doi.org/10.1016/S0021-9258(19)67754-9
- Bajt M, Knight TR, Lemasters JJ, Jaeschke H. 2004. Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol. Sci. 80: 343-349. https://doi.org/10.1093/toxsci/kfh151
- Jaeschke H, McGill MR, Williams CD, Ramachandran A. 2011. Current issues with acetaminophen hepatotoxicity - a clinically relevant model to test the efficacy of natural products. Life Sci. 88: 737-745. https://doi.org/10.1016/j.lfs.2011.01.025
- Ramani K, Mavila N, Ko KS, Mato JM, Lu SC. 2016. Prohibitin 1 regulates the H19-Igf2 axis and proliferation in hepatocytes. J. Biol. Chem. 291: 24148-24159. https://doi.org/10.1074/jbc.M116.744045
- Xu Z, Wu J, Zha X. 2011. Up-regulation of prohibitin 1 is involved in the proliferation and migration of liver cancer cells. Sci. China. Life. Sci. 54: 121-127. https://doi.org/10.1007/s11427-010-4130-1
- Mishra S, Murphy LC, Nyomba BG, Murphy LJ. 2005. Prohibitin: a potential target for new therapeutics. Trends Mol. Med. 11: 192-197. https://doi.org/10.1016/j.molmed.2005.02.004
- Ko KS, Tomasi ML, Iglesias-Ara A, French BA, French SW, Ramani K, Lu SC. 2010. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology 52: 2096-2108. https://doi.org/10.1002/hep.23919
- Anstee QM, Day CP. 2012. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J. Hepatol. 57: 1097-1109. https://doi.org/10.1016/j.jhep.2012.04.041
- Lu SC, Mato JM. 2008. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J. Gastroenterol. Hepatol. 23: S73-S77. https://doi.org/10.1111/j.1440-1746.2007.05289.x
- Lu SC. 2000. S-adenosylmethionine. Int. J. Biochem. Cell. Biol. 32: 391-395. https://doi.org/10.1016/S1357-2725(99)00139-9
- Mato JM, Martinez-Chantar ML, Lu SC. 2015. S-adenosylmethionine metabolism and liver disease. Ann. Hepatol. 12: 183-189.
- Gonzalez FJ. 2005. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat. Res-Fund. Mol. M. 569: 101-110. https://doi.org/10.1016/j.mrfmmm.2004.04.021
- Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, GonzalezFJ. 1996. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J. Biol. Chem. 271: 12063-12067. https://doi.org/10.1074/jbc.271.20.12063
- Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro SI, Iyanagi T, et al. 2005. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics. 15: 677-685. https://doi.org/10.1097/01.fpc.0000173483.13689.56
- Tanikawa K, Torimura T. 2006. Studies on oxidative stress in liver diseases: important future trends in liver research. Med. Mol. Morphol. 39: 22-27. https://doi.org/10.1007/s00795-006-0313-z
- Zhu R, Wang Y, Zhang L, Guo Q. 2012. Oxidative stress and liver disease. Hepatol. Res. 42: 741-749. https://doi.org/10.1111/j.1872-034X.2012.00996.x
- Poss KD, Tonegawa S. 1997. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA94: 10925-10930. https://doi.org/10.1073/pnas.94.20.10925
- Yamawaki H, Berk BC. 2006. Thioredoxin in the cardiovascular system. J. Mol. Med. 84: 997-1003. https://doi.org/10.1007/s00109-006-0109-6
- Jan YH, Heck DE, Dragomir AC, Gardner CR, Laskin DL, Laskin, JD. 2014. Acetaminophen reactive intermediates target hepatic thioredoxin reductase. Chem. Res. Toxicol. 27: 882-894. https://doi.org/10.1021/tx5000443
- Yan M, Huo Y, Yin S, Hu H. 2018. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox. Biol. 17: 274-283. https://doi.org/10.1016/j.redox.2018.04.019
- Lee SM, Cho TS, Kim DJ, Cha YN. 1999. Protective effect of ethanol against acetaminophen-induced hepatotoxicity in mice: role of NADH: quinone reductase. Biochem. Pharmacol. 58: 1547-1555. https://doi.org/10.1016/S0006-2952(99)00248-8
- Lu SC. 1999. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 13: 1169-1183. https://doi.org/10.1096/fasebj.13.10.1169
- Behrends V, Giskeodegard GF, Bravo-Santano N, Letek M, Keun HC. 2019. Acetaminophen cytotoxicity in HepG2 cells is associated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Arch. Toxicol. 93: 341-353. https://doi.org/10.1007/s00204-018-2371-0
- Kaplowitz N. 1981. The importance and regulation of hepatic glutathione. Yale J. Biol. Med. 54: 497.
- Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. 2009. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med. 30: 86-98. https://doi.org/10.1016/j.mam.2008.08.009