DOI QR코드

DOI QR Code

Analysis of Brain Activation on the Self-Regulation Process in College Life Science Learning between Biology Major and Non-Major Students

생물전공 대학생과 비전공 대학생의 생명과학 학습에서 자기조절 과정의 두뇌 활성 분석

  • Received : 2022.11.02
  • Accepted : 2022.12.20
  • Published : 2022.12.31

Abstract

The purpose of this study is to analyze and compare brain activation that appears in the self-regulation process of biology major and non-major college students in life science learning. The self-regulation task implemented a life science learning situation with the concept of biological classification. The brain activation of college students was measured and analyzed by fNIRS. In the assimilation process, bilateral FP and left DLPFC show significant activation, and the two groups show a difference in the left OFC activation related to motivation and reward. In the conflict process, the left DLPFC shows significantly lower activation in common, and the two groups show a difference in activation between BA 46, which is related to recent memory, and BA 47, which is related to long-term memory. In the accommodation process, a significantly high activation was found in right DLPFC in common, and the two groups show a difference in activation between right DLPFC and right FP. These areas are in the right frontal lobe area and are related to the understanding of life science knowledge. As a result of this study, it can be seen that the brain activation patterns of biology major and non-major college students are different in the self-regulation process. In addition, we will propose additional neurological studies on self-regulation and present systems and learning strategies that can be constructed in school settings.

본 연구의 목적은 생명과학 학습에서 생물학 전공자와 비전공 대학생의 자기조절 과정에서 나타나는 뇌 활성을 분석하고 비교하는 것이다. 자기조절과제는 생물분류 개념으로 생명과학 학습상황을 구현하였다. 대학생들의 뇌 활성은 fNIRS에 의해 측정되고 분석되었다. 동화 과정에서 양측 FP와 좌 DLPFC는 유의미한 활성이 나타났으며, 두 그룹은 동기부여 및 보상과 관련된 좌측 OFC 활성에서 차이를 보였다. 갈등 과정에서 왼쪽 DLPFC는 공통적으로 활성이 현저히 낮았으며, 두 그룹은 최근 메모리와 관련된 BA46과 장기 메모리와 관련된 BA47의 활성에서 차이를 보였다. 동화 과정에서 우측 DLPFC에서 유의하게 높은 활성이 공통적으로 발견되었으며, 두 그룹은 우측 DLPFC와 우측 FP의 활성의 차이를 보였다. 이 영역들은 오른쪽 전두엽 영역에 있으며 생명과학 지식의 이해와 관련이 있다. 본 연구 결과 생물학 전공 대학생과 비전공 대학생의 뇌 활성 패턴은 자기조절 과정에서 차이가 있음을 알 수 있었다. 또한 자기조절에 대한 신경학적 연구를 추가로 제안하고 학교 환경에서 구성할 수 있는 시스템과 학습전략을 제시할 수 있을 것이다.

Keywords

References

  1. Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 2883-2901. https://doi.org/10.1016/j.neuropsychologia.2007.06.015
  2. Ballesta, S., Shi, W., Conen, K. E., & Padoa-Schioppa, C. (2020). Values encoded in orbitofrontal cortex are causally related to economic choices. Nature, 588(7838), 450-453. https://doi.org/10.1038/s41586-020-2880-x
  3. Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205. https://doi.org/10.1016/j.cortex.2012.05.022
  4. Baumert, A., Buchholz, N., Zinkernagel, A., Clarke, P., MacLeod, C., Osinsky, R., & Schmitt, M. (2020). Causal underpinnings of working memory and stroop interference control: testing the effects of anodal and cathodal tDCS over the left DLPFC. Cognitive, Affective, & Behavioral Neuroscience, 20(1), 34-48. https://doi.org/10.3758/s13415-019-00726-y
  5. Berger, A., Kofman, O., Livneh, U., & Henik, A. (2007). Multidisciplinary perspectives on attention and the development of self-regulation. Progress in Neurobiology, 82(5), 256-286. https://doi.org/10.1016/j.pneurobio.2007.06.004
  6. Blume, F., Irmer, A., Dirk, J., & Schmiedek, F. (2022). Day to-day variation in students' academic success: The role of self-regulation, working memory, and achievement goals. Developmental Science, https://doi.org/10.1111/desc.13301.
  7. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58-75. https://doi.org/10.1016/j.neubiorev.2012.10.003
  8. Byeon, J., & Kwon, Y. J. (2020). Development of the Learning Model for Biological Classification based on the Brain Connectivity using fMRI Analysis. Biology Education, 48(2), 188-202.
  9. Cohen, M. (2012). The importance of self-regulation for college student learning. College Student Journal, 46(4), 892-902.
  10. Dekker, S., Krabbendam, L., Lee, N., Boschloo, A., De Groot, R., & Jolles, J. (2016). Dominant goal orientations predict differences in academic achievement during adolescence through metacognitive self-regulation. Journal of Educational and Developmental Psychology, 6(1), 47-58.
  11. Dom, G., Sabbe, B., Hulstijn, W., & Van Den Brink, W. (2005). Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. The British Journal of Psychiatry, 187(3), 209-220. https://doi.org/10.1192/bjp.187.3.209
  12. Durantin, G., Gagnon, J.-F., Tremblay, S., & Dehais, F. (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research, 259, 16-23.
  13. Eilam, B., & Aharon, I. (2003). Students' planning in the process of self-regulated learning. Contemporary Educational Psychology, 28(3), 304-334.
  14. Eilam, B., & Reiter, S. (2014). Long-term self- regulation of biology learning using standard junior high school science curriculum. Science Education, 98(4), 705-737. https://doi.org/10.1002/sce.21124
  15. Elhusseini, S. A., Tischner, C. M., Aspiranti, K. B., & Fedewa, A. L. (2022). A quantitative review of the effects of self-regulation interventions on primary and secondary student academic achievement. Metacognition and Learning, 17, 1117-1139. https://doi.org/10.1007/s11409-022-09311-0
  16. Fairclough, S., Ewing, K., Burns, C., & Kreplin, U. (2019). Neural efficiency and mental workload: locating the red line. In Neuroergonomics (pp. 73-77): Elsevier.
  17. Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., ... Weinberger, D. R. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study. Neuroimage, 7(4), 296-303. https://doi.org/10.1006/nimg.1998.0338
  18. Gupta, R., & Tranel, D. (2012). Memory, neural substrates. In Encyclopedia of Human Behavior (pp. 593-600), London, UK: Academic Press.
  19. Karaca, M., & Bektas, O. (2021). The relationship between perceived role models and self-regulation in science. International Journal of Educational Research, 110, 101884.
  20. Keating, D. P. (2004). Cognitive and brain development. In Handbook of Adolescent Psychology, 2nd ed. (pp. 45-84). Hoboken, NJ.: John Wiley & Sons Inc.
  21. Knight, J. K., & Smith, M. K. (2010). Different but equal? How nonmajors and majors approach and learn genetics. CBE-Life Sciences Education, 9(1), 34-44. https://doi.org/10.1187/cbe.09-07-0047
  22. Koechlin, E. (2011). Frontal pole function: what is specifically human? Trends in Cognitive Sciences, 15(6), 241.
  23. Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318(5850), 594-598. https://doi.org/10.1126/science.1142995
  24. Kwon, S. H., Park, S. H., Park, J. S., Hwang, N. R., & Kwon, Y. J. (2020). Identification of fNIRS Brain Activity and Exploration of Deep Learning-Based Predictive Model in Self-Regulation Process Taking Mirror Task. Brain, Digital, & Learning, 10(4), 365-376. https://doi.org/10.31216/BDL.2020.10.4.365
  25. Kwon, Y. J., Lee, J. K., Shin, D. H., & Jeong, J. S. (2009). Changes in brain activation induced by the training of hypothesis generation skills: An fMRI study. Brain and Cognition, 69(2), 391-397. https://doi.org/10.1016/j.bandc.2008.08.032
  26. Lawson, A. E. (1995). Science Teaching and the Development of Thinking. Belmont, CA.: Wadsworth Publishing.
  27. Lawson, A. E., & Wollman, W. T. (1977). Using chemistry problems to provoke self-regulation. Journal of Chemical Education, 54(1), 41.
  28. Lee, S. R., & Kwon, Y. J. (2022). Age-Specific Brain Activation in Secondary School Students' Self-Regulating Activities on Biological Tasks -fNIRS Study. Journal of Science Education, 46(1), 30-39.
  29. Mansouri, F. A., Koechlin, E., Rosa, M. G., & Buckley, M. J. (2017). Managing competing goals-a key role for the frontopolar cortex. Nature Reviews Neuroscience, 18(11), 645-657. https://doi.org/10.1038/nrn.2017.111
  30. McClelland, M. M., Ponitz, C. C., Messersmith, E. E., & Tominey, S. (2010). Self-regulation: Integration of Cognition and Emotion.
  31. Murphy, D., Daly, E., Van Amelsvoort, T., Robertson, D., Simmons, A., & Critchley, H. (1998). Functional neuroanatomical dissociation of verbal, visual and spatial working memory. Schizophrenia Research, 1(29), 105-106.
  32. Organisation for Economic Co-operation and Development (OECD). (2018). The future of education and skills: Education 2030. OECD Education Working Papers.
  33. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  34. Paniukov, D., & Davis, T. (2018). The evaluative role of rostrolateral prefrontal cortex in rule-based category learning. Neuroimage, 166, 19-31. https://doi.org/10.1016/j.neuroimage.2017.10.057
  35. Park, J. S., & Kwon, Y. J. (2021). Comparison of science gifted and general students' brain activity and thinking process in the process of self-regulation-An fNIRS study. Brain, Digital, & Learning, 11(2), 405-416.
  36. Park, S. H., Lee, S. M., Kwon, S. H., & Kwon, Y. J. (2022). A Study on the Brain Network Development Model in Self-Regulation Process of Adolescents' Life Science Learning. Brain, Digital, & Learning, 12(1), 119-129.
  37. Pas, P., Hulshoff Pol, H. E., Raemaekers, M., & Vink, M. (2021). Self-regulation in the pre-adolescent brain. Developmental Cognitive Neuroscience, 51, 101012. 
  38. Piaget, J. (1968). Six Psychological Studies. New York: Vintage Books.
  39. Sahranavard, S., Miri, M. R., & Salehiniya, H. (2018). The relationship between selfregulation and educational performance in students. Journal of Education and Health Promotion, 7, 154-159.
  40. Sebesta, A. J., & Bray Speth, E. (2017). How should I study for the exam? Self-regulated learning strategies and achievement in introductory biology. CBE-Life Sciences Education, 16(2), ar30.
  41. Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nature Neuroscience, 18(5), 620-627. https://doi.org/10.1038/nn.3982
  42. Stanton, J. D., Neider, X. N., Gallegos, I. J., & Clark, N. C. (2015). Differences in metacognitive regulation in introductory biology students: when prompts are not enough. CBE-Life Sciences Education, 14(2), ar15.
  43. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1), 78-106. https://doi.org/10.1016/j.dr.2007.08.002
  44. Steinberg, L., Icenogle, G., Shulman, E. P., Breiner, K., Chein, J., Bacchini, D., ... Dodge, K. A. (2018). Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Developmental Science, 21(2), e12532.
  45. Thibodeaux, J., Deutsch, A., Kitsantas, A., & Winsler, A. (2017). First-year college students' time use: Relations with self-regulation and GPA. Journal of Advanced Academics, 28(1), 5-27. https://doi.org/10.1177/1932202X16676860
  46. Toepper, M., Gebhardt, H., Beblo, T., Thomas, C., Driessen, M., Bischoff, M., ... Sammer, G. (2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165(4), 1244-1253. https://doi.org/10.1016/j.neuroscience.2009.11.019
  47. Vink, M., Gladwin, T. E., Geeraerts, S., Pas, P., Bos, D., Hofstee, M., & Vollebergh, W. (2020). Towards an integrated account of the development of self-regulation from a neurocognitive perspective: A framework for current and future longitudinal multi-modal investigations. Developmental Cognitive Neuroscience, 45, 100829.
  48. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30(1), 31-56.
  49. Woltering, S., & Shi, Q. (2016). On the neuroscience of self-regulation in children with disruptive behavior problems: Implications for education. Review of Educational Research, 86(4), 1085-1110.
  50. Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: a network visualization tool for human brain connectomics. PloS One, 8(7), e68910.
  51. Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447. https://doi.org/10.1016/j.neuroimage.2008.08.036