DOI QR코드

DOI QR Code

An Analysis on Media Trends in Public Agency for Social Service Applying Text Mining

텍스트 마이닝을 적용한 사회서비스원 언론보도기사 분석

  • Received : 2022.02.06
  • Accepted : 2022.04.02
  • Published : 2022.04.30

Abstract

This study tried to empirically explore which issues related to the social service agency for public(as below SSA), that is, social perceptions were formed, by using mess media related to the SSA. This study is meaningful in that it identifies the overall social perception and trend of SSA through public opinion. In order to extract media trend data, the search used the big data analysis system, Textom, to collect data from the representative portals Naver News and Daum News. The collected texts were 1,299 in 2020 and 1,410 in 2021, for a total of 2,709. As a result of the analysis, first, the most derived words in relation to the frequency of text appearance were 'SSA', 'establishment', and 'operation'. Second, as a result of the N-gram analysis, the pairs of words directly related to the SSA 'SSA and public', 'SSA and opening', 'SSA and launch', and 'SSA and Department Director', 'SSA and Staff', 'SSA and Caregiver' etc. Third, in the results of TF-IDF analysis and word network analysis, similar to the word occurrence frequency and N-gram results, 'establishment', 'operation', 'public', 'launch', 'provided', 'opened', ' 'Holding' and 'Care' were derived. Based on the above analysis results, it was suggested to strengthen the emergency care support group, to commercialize it in detail, and to stabilize jobs.

본 연구는 사회서비스원과 관련한 국내 언론보도기사를 주요 원자료로 삼고, 기사에 내재된 주요 키워드 및 토픽을 분석하여 사회서비스원과 관련한 이슈, 즉 사회적 인식이 어떻게 형성되었는지를 실증적으로 탐색하고자 하였다. 본 연구는 사회서비스원에 관한 사회 전반적인 인식 및 동향을 여론을 통해 파악한다는 점에서 의의가 있다. 언론동향의 데이터를 추출하기 위해 검색은 빅테이터 분석 시스템인 텍스톰을 사용하여 대표적 포털인 네이버 뉴스와 다음 뉴스에서 자료를 수집하였다. 수집된 기사는 2020년도 1,299개, 2021년도 총 1,410로, 총 2,709개였다. 분석결과로 첫째, 텍스트 출현빈도와 관련해서 가장 많이 도출된 단어는 '사회서비스원', '설립', '운영' 등으로 주로 사회서비스원의 설립과 관련한 내용이 주를 이루고 있었다. 둘째, N-gram분석결과 사회서비스원과 직접 관련된 단어의 쌍(pairs)은 '사회서비스원과 공공', '사회서비스원과 개원', '사회서비스원과 출범', '사회서비스원과 원장', '사회서비스원과 직원', '사회서비스원과 돌봄종사자' 등으로 나타났다. 셋째, TF-IDF 분석결과 및 단어 네트워크 분석결과에서는 단어출현빈도와 N-gram의 결과와 유사하게 '설립', '운영', '공공', '출범', '제공', '개원', '개최', '돌봄' 등의 결과가 도출되었다. 상기분석결과를 통해 긴급돌봄지원단의 강화, 구체적인 사업화, 일자리의 안정화 등을 제언하였다.

Keywords

References

  1. H.J.Ko, "Progress of the Social Service Center on its 1st anniversary," Social Service Central Support Group Online Academic Seminar Resources, pp.3-9, 2020.
  2. N.J.Yang, "Does Public Agency for Social Service Strengthen Publicness of Social Services?," Korea Social Policy Review, Vol.27, No.4, pp.107-135, 2020. https://doi.org/10.17000/KSPR.27.4.202012.107
  3. M.W.Lee, "Issues and Tasks for Establishment of Public Social Service Agency," National Assembly Legislative Investigation Office: Issues and Points, pp.1469, 2018.
  4. S.M.Kim, "Analysis of Press Articles in Korean Media on Online Education related to COVID-19," Journal of Digital Contents Society, Vol.21, No.6, pp.1091-1100, 2020. https://doi.org/10.9728/dcs.2020.21.6.1091
  5. J.W.Jeong, J.M.Lee and S.Y.Choi, "Analysis of news regarding the disabled labor using text mining techniques," Reinterpretation of Disability, No.1, pp.48-100, 2018.
  6. K.E.Yang and B.R.Roe, "Multicultural Discourse in South Korea - Text mining Analysis of Newspaper Articles," Korean Journal of Social Welfare, Vol.72, No.3, pp.33-58, 2020. https://doi.org/10.20970/kasw.2020.72.3.002
  7. J.Y.Ahn, Y.J.Lee and B.I.Lee, "Analysis of Media Articles on COVID-19 and Nurses Using Text Mining and Topic Modeling," Journal of Korean Academy of Community Health Nursing, Vol.32, No.4, pp.467-476, 2021. https://doi.org/10.12799/jkachn.2021.32.4.467
  8. J.M.Lee and I.S.Park, "Social Awareness analysis of Social Enterprises using Text Mining," Social Enterprise Studies, Vol.14, No.2, pp.111-135, 2021.
  9. J.B.Ha and D.E.Lee, "Trend Analysis and Policy proposal for the Work Permit System through Text Mining: Focusing on Text Mining and Social Network analysis," Journal of Convergence for Information Technology, Vol.11, No.9, pp.17-27, 2021. https://doi.org/10.22156/CS4SMB.2021.11.09.017
  10. J.S.Jeong and H.D.Kim, "Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques," Journal of Intelligence and Information Systems, Vol.27, No.2, pp.33-54, 2021. https://doi.org/10.13088/JIIS.2021.27.2.033
  11. R.Feldman and J.Sanger, The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, New York: Cambridge Univ. Press, 2007.
  12. M.S.Kim, C.H.Koo and B.D.Sohn, "A Study on the Effectiveness of Educational Welfare Priority Support Program through Text Mining," Korean Journal of Youth Studies, Vol.26, No.2, pp.313-332, 2019. https://doi.org/10.21509/kjys.2019.02.26.2.313
  13. D.I.Yook, "Text Mining-Based Analysis for Research Trends in Vocational Studies," Journal of Korea Academia-Industrial cooperation Society, Vol.18, No.3, pp.586-599, 2017.
  14. S.M.Baek and I.O.Moon, "The Study on the patient safety culture convergence research topics through text mining and CONCOR analysis," Journal of Digital Convergence, Vol.19, No.2, pp.359-367, 2021.
  15. H.K.Park, J.S.Ryu, J.E.Lee and H.S.Kim, Research on the Advanced Training Programs for Care Service Workers - Focused on the publicness of Public Care Center, Gyeong-nam: Gyeong-nam Public Agency for Social Service, 2021.