DOI QR코드

DOI QR Code

The Alterations of Geochemical Behavior of Arsenic in Stabilized Soil by the Addition of Phosphate Fertilizer

인산질 비료에 의한 안정화 적용 토양 내 비소의 지구화학적 거동 변화

  • Jeon, Yong-Jung (Department of Integrated Energy and Infra system, Graduate School, Kangwon National University) ;
  • Kim, Bun-Jun (Department of Integrated Energy and Infra system, Graduate School, Kangwon National University) ;
  • Ko, Ju-In (Technology Research & Development Institute, Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Ko, Myoung-Soo (Department of Integrated Energy and Infra system, Graduate School, Kangwon National University)
  • 전용중 (강원대학교 에너지.인프라 시스템 융합학과) ;
  • 김범준 (강원대학교 에너지.인프라 시스템 융합학과) ;
  • 고주인 (한국광해광업공단 기술연구원) ;
  • 고명수 (강원대학교 에너지.인프라 시스템 융합학과)
  • Received : 2022.04.08
  • Accepted : 2022.04.27
  • Published : 2022.04.28

Abstract

The purpose of this study was to confirm the dissolution of arsenic from the stabilized soil around abandoned coal mines by cultivation activities. Experimental soils were collected from the agricultural field around Okdong and Buguk coal mines, and the concentration of arsenic in the soil and the geochemical mobility were confirmed. The average arsenic concentration was 20 mg/kg. The soil with relatively high geochemical mobility of arsenic in the soil was used in the batch and column experiment. The limestone was mixed with soil for soil stabilization, and the mixing ratio was 3% of limestone, based on the soil weight. The phosphoric acid fertilizer (NH4H2PO4) was added to the soil to simulate a cultivation condition according to the Rural Development Administration's rules. Comparative soil without mixing limestone was prepared and used as a control group. The arsenic extraction from soil was increased following the fertilizer mixing amount and it shows a positive relationship. The concentration of phosphate in the supernatant was relatively low under the condition of mixing limestone, which is determined to be result of binding precipitation of phosphate ions and calcium ions dissolved in limestone. Columns were set to mix phosphoric acid fertilizers and limestone corresponding to cultivation and stabilization conditions, and then the column test was conducted. The variations of arsenic extraction from the soil indicated that the stabilization was effectible until 10 P.V.; however, the stabilization effect of limestone decreased with time. Moreover, the geochemical mobility of arsenic has transformed by increasing the mobile fractions in soil compared to initial soil. Therefore, based on the arsenic extraction results, the cultivation activities using phosphoric fertilizer could induce a decrease in the stabilization effect.

경작을 위해 토양에 공급하는 인산질 비료가 석회석을 이용한 안정화 적용 토양에서 비소의 용출에 미치는 영향을 회분식 실험과 칼럼실험을 통해 확인하였다. 토양은 폐석탄광인 옥동, 부국 탄광 주변 경작지에서 채취하였으며, 채취한 토양의 평균 비소 농도는 20.0 mg/kg으로 나타났다. 연속추출을 통해 비소의 지구화학적 이동성이 상대적으로 높은 토양을 선택하여 실험에 사용하였다. 석회석(3 wt%)과 토양을 혼합하여 안정화 적용 토양을 준비하고 농촌진흥청에서 제시한 경작지 토양 내 유효인산 기준을 바탕으로 인산질 비료(NH4H2PO4)를 토양과 혼합하였다. 이때, 석회석과 혼합하지 않은 비교토양을 준비하여 대조군으로 활용하였다. 토양으로부터 용출되는 비소의 농도는 인산질 비료의 공급량과 양의 상관관계를 나타냈다. 이러한 결과는 안정화 유무에 따라 큰 차이를 보이지 않았다. 용출액 내 인산염(PO43-)의 농도는 석회석을 혼합한 조건에서 상대적으로 낮은 결과를 보였는데, 이러한 결과는 PO43-와 석회석에서 용해된 칼슘 이온(Ca2+)의 결합침전에 의한 것으로 판단된다. 지속적으로 관개 수를 공급하는 경작환경에서 인산질 비료가 비소의 용출에 미치는 영향을 확인하기 위해 칼럼실험을 진행하였다. 칼럼실험 초기 10 P.V.까지는 토양으로부터 비소의 용출량이 석회석 혼합조건에서 더 적었지만 이후에는 석회석 혼합조건과 상관없이 유출 수의 비소 농도가 점차 증가하였다. 칼럼실험 이후 잔류토양을 건조시켜 연속추출을 실시한 결과 안정화 조건에 상관없이 실험 전 토양과 비교하여 상대적으로 이동 가능한 형태의 비소의 분율이 증가하였다. 이러한 결과는 석회석을 이용하여 토양 안정화 공법을 적용하여도 경작과정에서 공급하는 인산질 비료에 의해 토양 내 비소의 지구화학적 이동도가 증가하여 안정화 효과가 감소할 수 있음을 보여준다.

Keywords

Acknowledgement

이 연구는 2020년도 강원대학교 대학회계 학술연구 조성비의 지원 및 한국광해관리공단 광해방지기술개발 사업의 지원을 받아 수행하였습니다.

References

  1. Ball, D.F. (1964) Loss-on-ignition as an Estimate of Organic Matter and Organic Carbon in Non-calcareous Soils. J. Soil Sci., v.15(1), p.84-92. https://doi.org/10.1111/j.1365-2389.1964.tb00247.x
  2. Bray, R.H. and Kurtz, L.T. (1945) Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Science, 39-45p.
  3. Bruce, A. Manning and Goldberg, S. (1996) Modeling Competitive Adsorption of Arsenate with Phosphate and Molybdate on Oxide Minerals. Soil Sci. Soc. Am. J., v.60, p.121-131. https://doi.org/10.2136/sssaj1996.03615995006000010020x
  4. Cho, H.R., Jung, K.H., Zhang, Y.S., Han, K.H., Roh, A.S., Cho, K.R., Lim, S.H., Choi, S.C., Lee, J.I., Yun, Y.U., Ahn, B.G., Kim, B.H., Park, J.H., Kim, C.Y. and Park, S.J. (2013) Assessment of Soil Compaction Related to the Bulk Density with Land Use Types on Arable Land. Korean J. Soil Sci. Fert., v.46(5) p.333-342.
  5. Chon, H.T., Kim, J.Y. and Choi, S.Y. (1998) Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine -With Special Reference to Geochemical Environment around the Imgok Creek in the Gangreung Coal Field-. Econ. Environ. Geol., v.31(6), p.499-508.
  6. Choo, C.O. and Lee, J.K. (2019) Characteristics of Water Contamination and Precipitates of Acid Mine Drainage, Bongyang Abandoned Coal Mine, Danyang, Chungbuk Province with Emphasis on Fe and Al Behaviors. J. Eng. Geol., v.29(2), p.163-183. https://doi.org/10.9720/KSEG.2019.2.163
  7. Han, H.J., Song, C.W. and Lee, J.U. (2021) The Statistical Study on the Effects of Physicochemical Properties of Soil on Single Extraction Methods for Heavy Metals. Econ. Environ. Geol., v.54(2), p.259-269. https://doi.org/10.9719/EEG.2021.54.2.259
  8. Jung, M.C. (2003) Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang Areas, Korea. Econ. Environ. Geol., v.36(2), p.111-121.
  9. Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.K., Kim, H.W., Kim, H.K., Park, J.H., Lee, Y.H., Yang, S.H., Ryu, J.S., Jang, Y.S., Kim, M.S., Son, Y.K., Lee, C.H., Ha, S.G., Lee, D.B. and Kim, Y.H. (2012) Status and Changes in Chemical Properties of Paddy Soil in Korea. Korean J. Soil Sci. Fert., v.45(6), p.968-972. https://doi.org/10.7745/KJSSF.2012.45.6.968
  10. Kim, H.J., Yang, J.E., Ok, Y.S., Lee, J.Y., Park, B.K., Kong, S.H. and Jun, S.H. (2005) Assessment of Water Pollution by Discharge of Abandoned Mines. J. Soil Groundwater Environ., v.10(5), p.25-36.
  11. Ko, M.S., Ji, W.H., Kim, Y.G. and Park, H.S. (2019) Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets. Econ. Environ. Geol., v.52(1), p.29-35. https://doi.org/10.9719/EEG.2019.52.1.29
  12. Kwon, J.C., Jung, M.C. and Kang, M.H. (2013) Contents and Seasonal Variations of Arsenic in Paddy Soils and Rice Crops around the Abandoned Metal Mines. Econ. Environ. Geol., v.46(3), p.329-338. https://doi.org/10.9719/EEG.2013.46.4.329
  13. Lee, C.H. and Lee, H.K. (1997) Geochemical Behavior, Dispersion and Enrichment of Environmental Toxic Elements in Coaly Metapelites and Stream Sediments at the Hoenam Area, up the Taecheong Lake, Korea. Econ. Environ. Geol., v.30(3), p.209-222. https://doi.org/10.1007/s002540050148
  14. Lee, E.G. and Choi, S.I. (2007) Stabilization of Heavy Metals-contaminated Soils Around the Abandoned Mine area Using Phosphate. J. Soil Groundwater Environ., v.12(6), p.100-106.
  15. Lee, M.H., Choi, J.C. and Kim, J.W. (2003) Distribution and Remediation Design of Heavy Metal Contamination in Farmland Soils and River Deposits in the vicinity of the Goro Abandoned Mine. Econ. Environ. Geol., v.36(2), p.89-101.
  16. Lee, M.H. and Jeon, J.H. (2010) Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone. Econ. Environ. Geol., v.43(4), p.305-314.
  17. Lee, S.H. and Cho, J.H. (2009) In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, Using Various Stabilizing Agents: Column Test Study. J. Soil Groundwater Environ., v.14(4), p.45-53.
  18. Martin V. Maier, Yvonne Wolter, Daniel Zentler, Christian Scholz, Charlotte N. Stim and Margot Isenbeck-Schroter (2019) Phosphate Induced Arsenic Mobilization as a Potentially Effective In-Situ Remediation Technique-Preliminary Column Tests. Water 2019, v.11, p.2364.
  19. Meharg, A.A. and Zhao, F.J. (2012) Arsenic & rice, Springer, Dordrecht, Heidelberg, London, New York, p.71-74.
  20. NAAS (2010) Annual Report of the Monitoring Project on Agro-environmental Quality. RDA, Suwon.
  21. NIER (2018) Soil Environment Standard Test, Soil Environment Preservation Act. National Institute of Environmental, Incheon, 2018-53.
  22. RDA (2020) Rural Develpment Adminstration Notice Attached Table 1, v.15, p.3
  23. Seo, J.H., Yu, J.Y., Koh, S.M. and Lee, B.H. (2020) Spectral Characteristics associated with Heavy Metal Concentration and Mineral Composition in Cropland Rice Field Soils from Downstream of an Abandoned Coal Mine. Econ. Environ. Geol., v.53(6), p.743-753. https://doi.org/10.9719/EEG.2020.53.6.743
  24. Son, J.H., Roh, H., Lee, S.Y., Kim, S.K., Kim, G.H., Park, J.K., Yang, J.K. and Chang, Y.Y. (2009) Stabilization of Heavy Metal Contaminated Paddy Soils near Abandoned Mine with Steel Slag and CaO. J. Soil Groundwater Environ., v.14(6), p.78-86.
  25. USEPA (1986) Method 9081 Cation-exchange Capacity of Soils (sodium acetate).
  26. Wenzel, W., Kirchaumer, N., Prohaska, T., Stingeder, G., Lombi, E. and Adriano, D. (2001) Arsenic Fraction in Soils Using an Improved Sequential Extraction Procedure. Anal. Chim. Acta, v.436, p.309-323. https://doi.org/10.1016/S0003-2670(01)00924-2
  27. Yang, W.J., Jho, E.H., Im, J.W., Jeong, S.K. and Nam, K.P. (2016) Effect of Aging on the Chemical Forms and Phytotoxicity of Arsenic in Soil. J. Soil Groundwater Environ., v.21(3), p.82-87. https://doi.org/10.7857/JSGE.2016.21.3.082
  28. Yun, S.W., Kang, S.I., Jin, H.G., Kim, H.J. and Yu, C. (2011) Leaching Characteristics of Arsenic and Heavy Metals and Stabilization Effects of Limestone and Steel Refining Slag in a Reducing Environment of Flooded Paddy Soil. J. Agric. Life Sci., v.45(6), p.251-263.
  29. Yun, S.W., Yu, C., Yoon, Y.C., Kang, D.H., Lee, S.Y., Son, J.K. and Kim, D.H. (2012) Leaching Behavior of Arsenic and Heavy-Metals and Treatment Effects of Steel Refining Slag in a Reducing Environment of Paddy Soil. J. Korean Soc. Agric. Eng., v.58(3), p.29-38. https://doi.org/10.5389/KSAE.2016.58.3.029