DOI QR코드

DOI QR Code

Technical Trends of Ti3C2TX MXene-based Flexible Electrodes

Ti3C2TX MXene 기반 유연 전극 기술 개발 동향

  • Choi, Su Bin (School of Advanced Materials Engineering Jeonbuk National University) ;
  • Meena, Jagan Singh (School of Advanced Materials Engineering Jeonbuk National University) ;
  • Kim, Jong-Woong (School of Advanced Materials Engineering Jeonbuk National University)
  • Received : 2022.03.10
  • Accepted : 2022.03.23
  • Published : 2022.03.30

Abstract

Ti3C2TX MXene, first reported by Naguib et al. in 2011, has attracted tremendous attention due to its excellent hydrophilicity, electrical conductivity, and mechanical/chemical stability. Since MXene is a two-dimensional material with a thickness of few nanometers, which ensure its flexibility. In last few years, due to these properties many researchers used Ti3C2TX MXene into various fields such as flexible smart sensors, energy harvesting/storage devices, supercapacitors and electromagnetic interference shielding systems. In this review article, we have briefly discussed the various synthesis processes and characteristics of Ti3C2TX MXene. Moreover, we reviewed the latest development of Ti3C2TX MXene as flexible electrode material to be used into different applications.

2011년 Naguib 그룹에서 처음 보고한 Ti3C2TX MXene은 우수한 친수성, 전기 전도성 및 기계적/화학적 안정성으로 인해 큰 주목을 받고 있다. 특히, MXene은 수 나노미터 두께를 지닌 2차원 물질이므로 유연성을 확보하기에 용이하기 때문에 스마트 센서, 에너지 하베스팅/저장 시스템, 수퍼커패시터 및 전자기 차폐 시스템 등 여러 분야에 적용하고자 한 연구 결과가 많이 보고되었다. 본 논문에서는 Ti3C2TX MXene의 다양한 합성 공정 및 특성에 대해 간략히 소개한 후, Ti3C2TX MXene을 유연 전극 물질로 이용한 최근 연구 결과를 알아보고자 한다.

Keywords

Acknowledgement

이 논문은 산업 기술 R&D 지원 사업의 지원(20006467)에 의해 수행되었습니다.

References

  1. M. Long, P. Wang, H. Fang and W. Hu, "Progress, Challenges, and Opportunities for 2D Material Based Photodetectors", Adv. Funct. Mater., 29(19), 1803807-1803807 (2019). https://doi.org/10.1002/adfm.201803807
  2. Y. P. V. Subbaiah, K. J. Saji and A. Tiwari, "Atomically Thin MoS2 : A Versatile Nongraphene 2D Material", Adv. Funct. Mater., 26(13), 2046-2069 (2016). https://doi.org/10.1002/adfm.201504202
  3. T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, "2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges", Adv. Sci., 7(11), 20000058-2000083 (2020)
  4. Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, and J. Qiu, "Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors", Adv. Funct. Mater., 26(1), 111-119 (2016). https://doi.org/10.1002/adfm.201504004
  5. S. Wang, S. Zhao, X. Guo, and G. Wang, "2D Material-Based Heterostructures for Rechargeable Batteries", Adv. Energy Mater., 12(4), 2100864-2100885 (2021).
  6. M. R. Rosenberger, H. J. Chuang, K. M. McCreary, A. T. Hanbicki, S. V. Sivaram, and B. T. Jonker, "Nano-Squeegee" for the Creation of Clean 2D Material Interfaces", ACS Appl. Mater. Interfaces, 10(12), 10379-10387 (2018). https://doi.org/10.1021/acsami.8b01224
  7. G. A. Muller, J. B. Cook, H. S. Kim, S, H. Tolbert and B. Dunn, "High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals", Nano Lett., 15(3), 1911-1917 (2015). https://doi.org/10.1021/nl504764m
  8. H. Huang, H. Shi, P. Das, J. Qin, Y. Li, X. Wang, F. Su, P. Wen, S. Li, P. Lu, F. Liu, Y. Li, Y. Zhang, Y. Wang, Z. S. Wu, and H. M. Cheng, "The Chemistry and Promising Applications of Graphene and Porous Graphene Materials", Adv. Funct. Mater., 30(41), 1909035-1909074 (2020). https://doi.org/10.1002/adfm.201909035
  9. H. Zhu, F. Zhang, J. Li, and Y. Tang, "Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based DualIon Battery", Small, 14(13), 1703951-1703958 (2018). https://doi.org/10.1002/smll.201703951
  10. M. Peng, L. Wang, L. Li, X. Tang, B. Huang, T. Hu, K. Yuan, and Y. Chen, "Manipulating the Interlayer Spacing of 3D MXenes with Improved Stability and Zinc-Ion Storage Capability", Adv. Funct. Mater., 32(7), 2109524-2109534 (2021).
  11. A. L. B. Jackson, M. Falmbigl, K. Hantanasirisakul, Z. Gu, D. Imbrenda, A. V. Plokhikh, A. W. Cole, C. Hatter, L. Wu, B. Anasori, Y. Gogotsi and J. E. Spanier, "van der Waals epitaxy of highly (111)-oriented BaTiO3 on MXene", Nanoscale, 11(2), 622-630 (2019). https://doi.org/10.1039/C8NR07140C
  12. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23(37), 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
  13. X. Feng, J. Ning, B. Wang, H. Guo, M. Xia, D. Wang, J. Zhang, Z. S. Wu, and Y. Hao, "Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene", Nano Energy, 72, 104741-104750 (2020). https://doi.org/10.1016/j.nanoen.2020.104741
  14. A. Saha, N. Shpigel, Rosy, N. Leifer, S. Taragin, T. Sharabani, H. Aviv, I. Perelshtein, G. Daniel Nessim, M. Noked and Y. Gogotsi, "Enhancing the Energy Storage Capabilities of Ti3C2Tx MXene Electrodes by Atomic Surface Reduction", Adv. Funct. Mater., 31(52),2106294 -2106304(2020).
  15. Y. Wei, L. Xiang, H. Ou, F. Li, Y. Zhang, Y. Qian, L.
  16. Hao, J. Diao, M. Zhang, P. Zhu, Y. Liu, Y. Kuang and Gang Chen, "MXene-Based Conductive Organohydrogels with Long-Term Environmental Stability and Multifunctionality", Adv. Funct. Mater., 30(48), 2005135-2005146 (2020). https://doi.org/10.1002/adfm.202005135
  17. Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Y. Kamata, S. Hayase and T. Ma, "High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells", Small, 14(47), 1802738-1802746 (2018). https://doi.org/10.1002/smll.201802738
  18. Y. Dong, H. Shi and Z. S. Wu, "Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries", 30(47), 2000706-2000730 (2020). https://doi.org/10.1002/adfm.202000706
  19. Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang, Q. Xiang, W. Chen, C. Liu, J. Luo and S. Yang, "MXene-Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors", Adv. Energy Mater., 10(9), 1903534-1903540 (2020). https://doi.org/10.1002/aenm.201903534
  20. J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou and Z. Z. Yu, "Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding", Adv. Mater., 29(38), 1702367-1702373 (2017). https://doi.org/10.1002/adma.201702367
  21. H. Zhanga, R. Sua, L. Shi, D. J. O'Connor and H. Wen, "Structural changes of Ti3SiC2 induced by helium irradiation with different doses", Appl. Surf. Sci., 434, 1210-1216 (2018). https://doi.org/10.1016/j.apsusc.2017.11.170
  22. H. Wang, J. Li, X. Kuai, L. Bu, L. Gao, X. Xiao and Y. Gogotsi, "Enhanced Rate Capability of Ion-Accessible Ti3C2Tx-NbN Hybrid Electrodes", Adv. Energy Mater., 10(35), 2001411-2001419 (2020). https://doi.org/10.1002/aenm.202001411
  23. Y. Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. Wang and Dianxue Cao, "Aggregation-Resistant 3D Ti3C2Tx MXene with Enhanced Kinetics for Potassium Ion Hybrid Capacitors", Adv. Funct. Mater., 30(50), 2005663-2005673 (2020). https://doi.org/10.1002/adfm.202005663
  24. C. Zhang, S. J. Kim, M. Ghidiu, M. Q. Zhao, M. W. Barsoum, V. Nicolosi and Y. Gogotsi, "Layered Orthorhombic Nb2O5@ Nb4C3TxandTiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries", Adv. Funct. Mater., 26(23), 4143-4151 (2016). https://doi.org/10.1002/adfm.201600682
  25. X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang, J. Wang, L. Zhang, X. Li, Z. Xiao, Q. Zhao, Y. Pei, G. Wang, C. Qin, H. Li, J. Lou, Q. Liu and Peng Zhou, "A New Memristor with 2D Ti3C2Tx MXene Flakes as an Artificial Bio-Synapse", Small, 15(25), 1900107-1900116 (2019). https://doi.org/10.1002/smll.201900107
  26. M. Naguib, M. W. Barsoum and Y. Gogotsi, "Ten Years of Progress in the Synthesis and Development of MXenes", Adv. Mater., 33(39), 2103393-2103403 (2021). https://doi.org/10.1002/adma.202103393
  27. J. Comea, J. M. Blacka, M. R. Lukatskayab, M. Naguibc, M. Beidaghib, A. J. Rondinonea, S. V. Kalinina, D. J. Wesolowskid, Y. Gogotsib and N. Balke, "Controlling the actuation properties of MXene paper electrodes upon cation intercalation", Nano Energy, 17, 27-35 (2015). https://doi.org/10.1016/j.nanoen.2015.07.028
  28. J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund and M. W. Barsoum, "Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films", Chem. Mater., 26(7), 2374-2381 (2014). https://doi.org/10.1021/cm500641a
  29. P. Kumar, S. Singh, S. A. R. Hashmi and K. H. Kim, "MXenes: Emerging 2D materials for hydrogen storage", Nano Energy, 85, 105989-106003 (2021). https://doi.org/10.1016/j.nanoen.2021.105989
  30. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin and Y. Gogotsi, "Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)", Chem. Mater., 29(18), 7633-7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
  31. J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, X. Wang, Y. Gogotsi and J. M. Razal, "Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity", Adv. Mater., 32(23), 2001093-2001102 (2020). https://doi.org/10.1002/adma.202001093
  32. X. Wang, T. S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N. C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon and Y. Gogotsi, "Influences from solvents on charge storage in titanium carbide MXenes", Nat. Energy, 4, 241-248 (2019). https://doi.org/10.1038/s41560-019-0339-9
  33. S. Yazdanparast, S. Soltanmohammad, A. F. White, G. J. Tucker and G. L. Brennecka, "Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes", ACS Appl. Mater. Interfaces, 12 (17), 20129-20137 (2020). https://doi.org/10.1021/acsami.0c03181
  34. H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu and Chun Li, "Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength", Adv. Funct. Mater., 30(5), 1906996-1907003 (2020). https://doi.org/10.1002/adfm.201906996
  35. L. Yu, L. Hu, B. Anasori, Y. T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi and B. Xu, "MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors", ACS Energy Lett., 3(7), 1597-1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
  36. C. Zhang, B. Anasori, A. S. Ascaso, S. H. Park, N. McEvoy, A. Shmeliov, G. S. Duesberg, J. N. Coleman, Y. Gogotsi and V. Nicolosi, "Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance", Adv. Mater., 29(36), 1702678-1702687 (2017). https://doi.org/10.1002/adma.201702678
  37. Z. Xiao, Z. Li, X. Menga and R. Wang, "MXene-engineered lithium-sulfur batteries", J. Mater. Chem. A, 7, 22730-22743 (2019). https://doi.org/10.1039/c9ta08600e
  38. B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, J. Ma, C. Liu and C. Shen, "Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance", ACS Appl. Mater. Interfaces, 12(36), 40859-40869 (2020). https://doi.org/10.1021/acsami.0c09020
  39. H. Tang, H. Feng, H. Wang, X. Wan, J. Liang and Y. Chen, "Highly Conducting MXene-Silver Nanowire Transparent Electrodes for Flexible Organic Solar Cells", ACS Appl. Mater. Interfaces, 11(28), 25330-25337 (2019). https://doi.org/10.1021/acsami.9b04113
  40. J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva and Yury Gogotsi, "Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance", Adv. Funct. Mater., 27(30),1701264-1701274 (2017). https://doi.org/10.1002/adfm.201701264
  41. L. Liao, D. Jiang, K. Zheng, M. Zhang and Jingquan Liu, "Industry-Scale and Environmentally Stable Ti3C2Tx MXene Based Film for Flexible Energy Storage Devices", Adv. Funct. Mater., 31(35), 2103960-2103970 (2021). https://doi.org/10.1002/adfm.202103960
  42. J. Choi, Y. J. Kim, S. Y. Cho, K. Park, H. Kang, S. J. Kim and H. T. Jung, "In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and its Application in Highly Sensitive Gas Sensors" Adv. Funct. Mater., 30(40), 2003998-2004007 (2020). https://doi.org/10.1002/adfm.202003998
  43. M. Guo, C. Liu, Z. Zhang, J. Zhou, Y. Tang and S. Luo, "Flexible Ti3C2Tx@Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing", Adv. Funct. Mater., 28(37), 1803196-1803205 (2018). https://doi.org/10.1002/adfm.201803196
  44. L. Liu, G. Ying, C. Hu, K. Zhang, F. Ma, L. Su, C. Zhang and C. Wang, "Functionalization with MXene (Ti3C2) Enhances the Wettability and Shear Strength of Carbon Fiber-Epoxy Composites", ACS Appl. Mater. Interfaces, 2(9), 5553-5562 (2019).
  45. G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi and A. D. Taylor "Layer-by-Layer Assembly of Cross-Functional Semi-transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding", Adv. Funct. Mater., 28(44),1803360-1803369 (2018). https://doi.org/10.1002/adfm.201803360
  46. A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dionb and Y. Gogotsi, "Electrospun MXene/carbon nanofibers as supercapacitor electrodes", J. Mater. Chem. A, 7, 269-277 (2019). https://doi.org/10.1039/c8ta09810g
  47. Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei and J. Gu, "Ultraflexible and Mechanically Strong DoubleLayered Aramid Nanofiber-Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding", ACS Nano, 14(7), 8368-8382 (2020). https://doi.org/10.1021/acsnano.0c02401
  48. X. Luo, L. Zhu, Y. C. Wang, J. Li, J. Nie and Z. L. Wang, "A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel", Adv. Funct. Mater., 31(38), 2104928-2104937 (2021). https://doi.org/10.1002/adfm.202104928
  49. W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and Feng Chen, "Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties", ACS Nano, 12 (5), 4583-4593 (2018). https://doi.org/10.1021/acsnano.8b00997
  50. D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang, L. Zhao, W. Han, K. Jiang and G. Shen, "Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors", Nano Energy, 78, 105252-105260 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
  51. H. Liao, X. Guo, P. Wan and G. Yu, "Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors", Adv. Funct. Mater., 29(39), 1904507-1904516 (2019). https://doi.org/10.1002/adfm.201904507
  52. Q. Li, R. Yin, D, Zhang, H. Liu, X. Chen, Y. Zheng, Z. Guo, C. Liu and C. Shen, "Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors", J. Mater. Chem. A, 8, 21131-21141 (2020). https://doi.org/10.1039/d0ta07832h
  53. Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong, J. Feng and Y. Qian, "Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries", ACS Nano, 13(10), 11676-11685 (2019). https://doi.org/10.1021/acsnano.9b05599
  54. C. Y. Wang, Z. J. Zheng, Y. Q. Feng, H. Ye, F. F. Cao and Z. P. Guo, "Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries", Nano Energy, 74, 104817-104825 (2020). https://doi.org/10.1016/j.nanoen.2020.104817
  55. Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan, L. He and B. Xu, "Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries", Small, 15(51), 1904293-1904302 (2019). https://doi.org/10.1002/smll.201904293
  56. W. Chen, L. X. Liu, H. B. Zhang and Z. Z. Yu, "Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding", ACS Nano, 14(12), 16643-16653 (2020). https://doi.org/10.1021/acsnano.0c01635
  57. Q. W. Wang. H. B. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, R. Yang, N. Koratkar and Z. Z. Yu, "Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances", Adv. Funct. Mater., 29 (7), 1806819-1806829 (2019). https://doi.org/10.1002/adfm.201806819
  58. Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nuesch, C. Zhang and G. Nystrom, "Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance", Adv. Sci., 7(15), 2000979-2000986 (2020). https://doi.org/10.1002/advs.202000979
  59. L. Shi, H. Jin, S. Dong, S. Huang, H. Xu, J. Chen, W. Xuan, S. Zhang, S. Li, X. Wang and J. Luo, "High-performance triboelectric nanogenerator based on electrospun PVDFgraphene nanosheet composite nanofibers for energy harvesting", Nano Energy, 80, 105599-105610 (2021). https://doi.org/10.1016/j.nanoen.2020.105599
  60. X. Luo, L. Zhu, Y. C. Wang, J. Li, J. Nie and Z. L. Wang, "A flexible multifunctional triboelectric nanogenerator based on MXene/PVA Hydrogel", Adv. Funct. Mater., 31(38), 2104928-2104937 (2021). https://doi.org/10.1002/adfm.202104928
  61. J. Liu, L. Zhang, N. Wang and C. Li, "Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor", Nano Energy, 78, 105385-105393 (2020). https://doi.org/10.1016/j.nanoen.2020.105385