DOI QR코드

DOI QR Code

Trends of Packaging and Micro-joining Technologies for Car Electronics

자동차용 전장품의 패키징 및 마이크로 접합기술 동향

  • Lee, Gyeong Ah (Department of Materials Science and Engineering, University of Seoul) ;
  • Cho, Do Hoon (Department of Materials Science and Engineering, University of Seoul) ;
  • Sri Harini, Rajendran (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2022.03.04
  • Accepted : 2022.03.21
  • Published : 2022.03.30

Abstract

Recently, the automobile industry is rapidly changing due to technological development. Next-generation cars with high technology and new functions are on the market. It is essential to develop electronic devices to meet the condition of next-generation cars. In this study, the authors have reviewed recent trends of automotive electronics and packaging technology. Automotive electronics are used in harsh environments compared with other industries. Thus, it is important to improve the reliability of device junctions that directly affect electronics performance. Soldering, TLP (transient liquid phase bonding), and sintering are introduced for the bonding methods in car electronics.

최근 자동차 산업은 친환경, 편리함, 안전성과 같은 키워드를 중심으로 기술 발전이 이뤄지면서 빠르게 변화하고 있다. 친환경에 대한 관심과 맞물려 그린 카(green car)가 이목을 끌고 사용자 편의를 위한 첨단 기술 및 기능을 갖춘 고성능 자동차가 시장에 출시되고 있다. 발전하는 차량 성능으로 인해서 이에 맞는 전장품의 개발 또한 필수적이다. 자동차용 전장품은 고온, 고습, 열충격, 진동, 오염 등 복합적인 환경에서 사용되기 때문에 여타 산업에 비해 높은 수준의 신뢰성 검증이 필요하다. 특히, 부품 내 접합부의 신뢰성을 확보하여 무리없이 기능을 수행하고 운전자의 안전을 보장하는 것이 핵심이다. 따라서 저자는 차량 전장품의 최근 동향을 살펴보고 신뢰성을 향상시킬 수 있는 접합 방법으로 솔더링, TLP 접합 및 소결접합을 소개하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 산업기술평가관리원(KEIT)의 소재부품기술개발사업 연구비 지원에 의해 수행되었습니다('20010580', 미니-LED 미세전극 접합을 위한 도전성 나노소재 기술 개발).

References

  1. RESEARCHANDMARKETS, Global Automotive Electronics Market 2021-2028, (May 2021) from https://www.researchandmarkets.com/reports/4668016
  2. S. S. Kim and S. M. Koo, "A Study on High Voltage SiC-IGBT Device Miniaturization", J. KIEEME, 26(11), 785-789 (2013).
  3. J. Wang, "A Comparison between Si and SiC MOSFETs", IOP Conf. Series: Materials Science and Engineering 729 012005 (2020).
  4. T. Kimoto, "Material science and device physics in SiC technology for high-voltage power devices", Jpn. J. Appl. Phys. 54 040103 (2015). https://doi.org/10.7567/JJAP.54.040103
  5. I. H. Kang, KIPE, 24(2), 26-32, (2019).
  6. J. W. Woo, J. J. Seo, S. H. Jin, Y. S. Koo, "Analysis of electrical characteristics according to the design parameter of 1200V 4H-SiC trench MOSFET", j.inst.Korean.electr.electron.eng., 24(2), 592-597, (2020).
  7. KERI, (May. 11, 2021) from https:/www.sciencetimes.co.kr/news/save-급이-다른-sic-전력반도체/
  8. Tech Web, (April. 25, 2019) from https://techweb.rohm.co.kr/knowledge/sic/s-sic/04-s-sic/6574
  9. ROHM Semiconductor from https://www.rohm.co.kr/sic/sicmos
  10. Car electronics research committee, "In-Vehicle Electronic Equipment Research through Car Tear Down to Estimate Future Packaging Challenges", 23(1), 73-82 (2020).
  11. GSMA rena, "Samsung unveils its first image sensor for cars, signs $436 million deal with Tesla", (July. 13, 2021) from-https://www.gsmarena.com/samsung_unveils_its_first_image_sensor_for_cars_signs_436_million_deal_with_tesla-news50016.php
  12. S. Kawakita, "Development Trend of Advanced Driver Assistance System and Packaging Technology Issue", Jour. of Japan Institute of Electronics Packaging, 23(3), 209-211 (2020).
  13. PCISIG from www.pcisig.com/specifications
  14. F. Baronti, et al.: "Design and Verification of Hardware Building Blocks for High-Speed and Fault-Tolerant In-Vehicle Networks," IEEE Transactions on Industrial Electronics, 58(3), 792-801, (2011). https://doi.org/10.1109/TIE.2009.2029583
  15. DELO from https://www.delo-adhesives.com/us/press-and-news/delo-news/details/bonding-in-cars
  16. J. H. Bang, D. Y. Yu, Y. H. Ko, J. W. Yoon and C. W. Lee, "Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint", Journal of Welding and Joining, 34(1), 26-34 (2016).
  17. S. J. Lee and J. P. Jung, "Lead-free Solder Technology and Reliability for Automotive Electronics", J. Microelectron. Packag. Soc. 22(3), 1-7 (2015). https://doi.org/10.6117/KMEPS.2015.22.3.001
  18. A. Y. Kim and W. S. Hong, "Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine", Journal of Welding and Joining, 32(3), 74-80 (2014). https://doi.org/10.5781/JWJ.2014.32.3.74
  19. J. H. Son, D. Y. Yu, Y. C. Kim, S. I. Kim, M. S. Kim, D. j. Byun and J. H. Bang, "Effect of Multiple Reflows on the Interfacial Reactions and Mechanical Properties of an Sn0.5Cu-Al(Si) Solder and a Cu Substrate", Materials, 14(9), 2367 (2021). https://doi.org/10.3390/ma14092367
  20. J. F. Lynch, L. Feinstein, and R. A. Huggins, "Brazing by the Diffusion Controlled Formation of a Liquid Intermediate Phase", Welding Journal, 38(2), 85-89 (1959).
  21. D. H. Jung, A. Sharma, M. Mayer and J. P. Jung, "A REVIEW ON RECENT ADVANCES IN TRANSIENT LIQUID PHASE (TLP) BONDING FOR THERMOELECTRIC POWER MODULE", Rev.Adv. Mater. Sci. 53, 147-160 (2018). https://doi.org/10.1515/rams-2018-0011
  22. C. Honrao, T. C. Huang, M. Kobayashi, V. Smet, P. M. Raj and R. Tummala, In: IEEE 64th Electronic Components and Technology Conference (Orlando, USA), 1160 (2014).
  23. J. H. Lee, D. H. Jung, and J. P. Jung, "Trasient Liquid Phase bonding for Power Semiconductor", J. Microelectron. Packag. Soc., 25(4), 9-15 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.009
  24. J. Strogies and K. Wilke, "Universal high-temperature suitable joint adapting diffusion soldering", Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, 1 (2014).
  25. M. H. Roh, H. Nishikawa, J. P. Jung, and W. J. Kim, "Trasient Liquid Phase bonding for Power Semiconductor", J. Micro-electron. Packag. Soc., 24(1), 27-34 (2017). https://doi.org/10.6117/kmeps.2017.24.1.027
  26. D. H. Jung, M. H. Roh, J. H. Lee, K. H. Kim and J. P. Jung, "Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation", J. Microelectron. Packag. Soc., 24(1), 17-25 (2017). https://doi.org/10.6117/KMEPS.2017.24.1.017
  27. N. Y. Lee, J. H. Lee and C. Y. Hyun, "Chip Sinter-Bonding Using Ag-Based Paste for Power Semiconductor Devices", Journal of Welding and Joining, 37(5), 482-492 (2019). https://doi.org/10.5781/jwj.2019.37.5.8
  28. J. Li, X. Li, L. Wang, Y. H. Mei, G. Q. Lu, "A novel multi-scale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air", Materials and Design 140, 64-72 (2018). https://doi.org/10.1016/j.matdes.2017.11.054
  29. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. J. Kim, T. Sugahara, S. Nagao, K. Suganuma, "Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air", Journal of Alloys and Compounds 780, 435-442 (2019). https://doi.org/10.1016/j.jallcom.2018.11.251
  30. W. Zhang, J. Chen, Z. Deng, Z. Liu, Q. Huang, W. Guo, J. Huang, "The pressureless sintering of micron silver paste for electrical connections", Journal of Alloys and Compounds 795, 163-167 (2019). https://doi.org/10.1016/j.jallcom.2019.04.270
  31. M. S. Kim, C. M. Oh, and W. S. Hong, "Pressureless Silver Sintering Property of SiC Device and ZTA AMB Substrate for Power Module", Journal of Welding and Joining, 37(2), 15-20 (2019). https://doi.org/10.5781/jwj.2019.37.2.3
  32. J. W. Yoon and J. H. Back, "Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications", Materials (Basel). 11(11): 2105 (2018). https://doi.org/10.3390/ma11112105