DOI QR코드

DOI QR Code

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption

활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착

  • Lee, Jong Jib (Department of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2021.12.15
  • Accepted : 2022.01.12
  • Published : 2022.04.10

Abstract

In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

본 논문은 활성탄에 의해 작용기가 다른 말라카이트 그린(MG), 다이렉트 레드 81 (DR 81) 및 티오플라빈 S (TS)의 흡착에 대한 파라미터 특성(PH 효과, 등온선, 동역학 및 열역학 파라미터) 및 염료의 경쟁 흡착에 대해 조사하였다. Langmuir, Freundlich 및 Temkin 등온선 모델을 사용하여 염료의 흡착 메커니즘 및 활성탄에 의한 흡착 처리의 적합성을 평가했다. Langmuir 무차원 분리 계수 값은 활성탄에 의한 세 가지 염료의 흡착 처리가 효과적인 방법임을 나타내었다. 활성탄에 대한 세 가지 염료의 흡착 메커니즘은 Temkin 식에서 계산된 흡착열로부터 물리 흡착임을 확인하였다. 세 가지 염료의 흡착 동역학은 유사 2차 모델에 가까웠으며 잘 일치함을 보여주었다. 활성탄에 의한 세 가지 염료의 흡착 과정의 속도 지배 단계는 입자내 확산이었다. 양의 엔탈피와 엔트로피 변화는 각각 흡열 반응과 고액계면에서 흡착에 의한 무질서도가 증가함을 나타내었다. 세 가지 염료의 음의 Gibbs 자유 에너지 값은 온도가 증가함에 따라 자발성이 높아지는 것을 나타냈다. 삼성분 경쟁흡착에서 흡착능력이 높은 MG는 혼합용액에서 DR 81과 TS에 의해 약간의 방해를 받았으나, 흡착능력이 낮은 DR 81과 TS는 흡착력이 좋은 MG의 영향을 받아 흡착률이 크게 증가하였다.

Keywords

Acknowledgement

이 논문은 2020년 공주대학교 학술연구비 지원사업의 연구지원에 의해 연구되었습니다.

References

  1. Wikipedia, https://en.wikipedia.org/wiki/Malachite_green (2021).
  2. Santa Cruz Biotechnology, https://datasheets.scbt.com/sc-215969.pdf (2021).
  3. J. J. Lee, Characteristics and parameters for adsorption of carbol fuchsin dye by coal-based activated carbon: kinetic and thermodynamic, Appl. Chem. Eng., 32, 283-289 (2021). https://doi.org/10.14478/ACE.2021.1010
  4. H. Mittal, A. A. Alili, P. P. Morajkar, and S. M. Alhassan, Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye, J. Mol. Liq., 323, 115034 (2021). https://doi.org/10.1016/j.molliq.2020.115034
  5. L. Zuo, W. Song, T. Shi, C. Lv, J. Yao, J. Liu, and Y. Weng, Adsorption of aniline on template-synthesized porous carbons, Micropor. Mesopor. Mater., 200, 174-181 (2014). https://doi.org/10.1016/j.micromeso.2014.08.036
  6. A. Kausar, M. Iqbal, A. Javeda, K. Aftab, Z.-i-H. Nazli, H. N. Bhatti, and S. Nouren, Dyes adsorption using clay and modified clay: A review, J. Mol. Liq., 256, 395-407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034
  7. B. H. Hameed, D. K. Mahmoud, and A. L. Ahmad, Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system, Coll. Surf. A, 316, 78-84 (2008). https://doi.org/10.1016/j.colsurfa.2007.08.033
  8. I. Belbachir and B. Makhoukhi, Adsorption of bezathren dyes onto sodic bentonite from aqueous solutions, J. Taiwan Inst. Chem. Eng., 75:105-111 (2017). https://doi.org/10.1016/j.jtice.2016.09.042
  9. J. J. Lee, Study on adsorption characteristics of reactive red 120 by coal-based granular activated carbon: Isotherm, kinetic and thermodynamic parameters, Appl. Chem. Eng., 31, 164-171 (2020).
  10. Y. Achour, L. Bahsis, E-H. Ablouh, H. Yazid, M. R. Laamari, and M. E. Haddad, Insight into adsorption mechanism of congo red dye onto Bombax Buonopozense bark activated carbon using central composite design and DFT studies, Surf. Interfaces, 23, 100977 (2021). https://doi.org/10.1016/j.surfin.2021.100977
  11. J. Fu, J. Zhu, Z. Wang, Y. Wang, S. Wang, R. Yan, and Q. Xu, Highly-efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism, J. Colloid Interface Sci., 542, 123-135 (2019). https://doi.org/10.1016/j.jcis.2019.01.131
  12. E. H. Lee, K. Y. Lee, K. W. Kim, H. J. Kim, I. S. Kim, D. Y. Chung, J. K. Moon, and J. W. Choi, Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste, J. Nucl. Fuel Cycle Waste Technol., 14, 223-234 (2016). https://doi.org/10.7733/JNFCWT.2016.14.3.223
  13. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  14. T. N. V. Souza, S. M. L. Carvalho, M. G. A. Vieira, M. G. C. Silva, and D. S. B. Brasil, Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors, Appl. Surf. Sci., 448, 662-670 (2018). https://doi.org/10.1016/j.apsusc.2018.04.087
  15. M. Pan, X. Lin, J. Vie, and X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites, RSC Adv., 7, 4492-4500 (2017). https://doi.org/10.1039/C6RA26802A
  16. W. S. W. Ngah and M. A. K. M. Hanafiah, Adsorption of copper on rubber (hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies, Biochem. Eng. J., 39, 521-530 (2008). https://doi.org/10.1016/j.bej.2007.11.006
  17. I. Belbachir and B. Makhoukhi, Adsorption of bezathren dyes onto sodic bentonite from aqueous solutions, J. Taiwan Inst. Chem. Eng., 75, 105-111 (2017). https://doi.org/10.1016/j.jtice.2016.09.042
  18. M. Rajabi, K. Mahanpoor, and O. Morami, Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: Kinetic and thermodynamic studies, Composite Part B: Eng., 167, 544-555 (2019). https://doi.org/10.1016/j.compositesb.2019.03.030
  19. U. I. Abubakar, G. Abdulraheem, S. Bala, S. Muhammad, and M. Abdullahi, Kinetics, equilibrium and thermodynamics studies of C.I. reactive blue 19 dye adsorption on coconut shell based activated carbon, Int. Biodeterior. Biodegradation, 102, 265-273 (2015). https://doi.org/10.1016/j.ibiod.2015.04.006
  20. T. Sato, S. Abe, S. Ito, and T. Abe, Silk fibroin fiber for selective palladium adsorption: Kinetic, isothermal and thermodynamic properties, J. Environ. Chem. Eng., 7, 521-530 (2019).
  21. P. S. Pauletto, J. O. Goncalves, L. A. A. Pinto, G. L. Dotto, and N. P. G. Salau, Single and competitive dye adsorption onto chitosan-based hybrid hydrogels using artificial neural network modeling, J. Colloid Interface Sci., 560, 722-729 (2020). https://doi.org/10.1016/j.jcis.2019.10.106
  22. A. Aichour and H. Zaghouane-Boudiaf, Single and competitive adsorption studies of two cationic dyes from aqueous mediums onto cellulose-based modified citrus peels /calcium alginate composite, Inter. J. Biol. Macromol., 154, 1227-1236 (2020) https://doi.org/10.1016/j.ijbiomac.2019.10.277