Acknowledgement
본 연구는 국방과학연구소의 연구비 지원(과제번호 : UD200010DD)으로 이루어졌습니다
References
- C. Salvador, S. Antonio, V. C. Juan, M. Nirvana, and J. S. Juan, "Underwater acoustic wireless sensor networks: advances and future trends in physical, mac and routing layers," Sensors, 14, 795-833 (2014). https://doi.org/10.3390/s140100795
- Y. Yan, W. Yanbo, Z. Min, L. Dong, and T. Jun, "Efficient on-off keying underwater acoustic communication for seafloor observation networks," Appl. Sci. 10, 1986 (2020). https://doi.org/10.3390/app10061986
- F. Mosca, G. Matte, and T. Shimura, "Low-frequency source for very long-range underwater communication," J. Acoust. Soc. Am. Express Letters, 133, (2013).
- T. C. Yang and W. Yang, "Low probability of detection underwater acoustic communications using direct sequence spread spectrum," J. Acoust. Soc. Am. 124, 3633-3647 (2008).
- T. C. Yang and W. Yang, "Performance analysis of direct-sequence spread spectrum underwater acoustic communications with low signal-to-noise ratio input signals," J. Acoust. Soc. Am. 123, 842-855 (2008). https://doi.org/10.1121/1.2828053
- Z. Liu, K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg, "Long range double differentially coded spread spectrum acoustic communication with a towed array," IEEE J. Oceanic Eng. 39, 482-490 (2014). https://doi.org/10.1109/joe.2013.2264994
- T. Shimura, Y. Watanabae, H. Ochi, and H. C. Song, "Long range time reversal communication in deep water : Experimental result," J. Acoust. Soc. Am. 132, 49-53 (2012). https://doi.org/10.1121/1.4730038
- A. Zhao, C. Zeng, J. Hui, L. Ma, and X. Bi, "Experimental demonstration of long-range underwater acoustic communication using a vertical sensor array," Sensors, 17, 1-12 (2017). https://doi.org/10.3390/s17010001
- J. Huang and R. Diamant, "Adaptive modulation for long-range underwater acoustic communication," IEEE Trans. Wireless Communications, 19, 6844-6857 (2020). https://doi.org/10.1109/twc.2020.3006230
- D. H. Kim, J. S. Kim, and J. Y. Hahn, "Verification of the feasibility of higher-order modulation for long-range communication in deep water" (in Korean), J. Acoust. Soc. Kr. 40, 428-438 (2021).
- H. I. Ra, J. H. An, C. H. Youn, K. M. Kim, and I. S. Kim, "Sea trial results of long range underwater acoustic communication based on direct sequence spread spectrum transmission in the East Sea" (in Korean), J. Acoust. Soc. Kr. 40, 304-313 (2021).
- S. G. Kim, S. Y. Sung, N. Y. Yun, C. H. Yun, and Y. K. Lim, "An implementation of signal processing platform for long-range underwater acoustic modem" (in Korean), Proc. Symp. the Korean Institute of Communications and Information Science, 490-491 (2017).
- J. H. Lee, G. H. Lee, K. M. Kim, and W. J. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea," (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
- C. He and J. Huang, "Underwater acoustic spread spectrum communication based on m family N group parallel transmission," Proc. MTS/IEEE Oceans Conf. 1-4 (2006).
- G. Yang, F. Zhou, G. Qiao, Y. Zhao, Y. Liu, Y. Lu, and Y. He, "Optimized Doppler estimation and symbol synchronization for mobile M-ary spread spectrum underwater acoustic communication," J. Marine Sci. Eng. 9, 1-23 (2021). https://doi.org/10.3390/jmse9010001
- F. Steinmetz, J. Heitmann, and C. Renner, "A practical guide to chirp spread spectrum for acoustic underwater communication in shallow water," Proc. in WUWNet. 1-8 (2018).
- C. U. Baek and J. W. Jung, "An efficient receiver structure based on PN performance in underwater acoustic communication" (in Korean), J. Navig. Port Res. 41, 173-180 (2017). https://doi.org/10.5394/KINPR.2017.41.4.173
- A. Annamalai, C. Tellambura, and V. K. Bhargava, "Equal-gain diversity receiver performance in wireless channels" IEEE Trans. Communications, 48, 1732-1745 (2010).
- H. W. Jeong, J. E. Shin, and J. W. Jung , "Performance analysis and experiment results of multiband FSK signal based on direct sequence spread spectrum method" (in Korean), J. Acoust. Soc. Kr. 40, 370-381 (2021).