DOI QR코드

DOI QR Code

Experimental analysis of very long range spread spectrum underwater acoustic communication using vertical sensor array

수직 배열 센서를 이용한 초장거리 대역확산 수중음향통신의 실험 분석

  • Received : 2022.01.12
  • Accepted : 2022.03.08
  • Published : 2022.03.31

Abstract

This paper presents the results of a sea trial for very long range spread spectrum underwater acoustic communication conducted in the East Sea in September 2021. Signals were collected through 8 vertical sensors, and the range between the transmitter and receiver was about 160 km. 30 bps Multi-Code Spread Spectrum (MCSS) method and 100 bps Chirp Spread Spectrum method were used for the transmitting signal generation. The results show that when the channel coding technique was not used in a single channel, the uncoded bit error rate was high, but when the Equal Gain Combining (EGC) diversity technique was used after frame synchronization in each receiving channel, the uncoded bit error rate was reduced to 0.1 or less.

본 논문에서는 2021년 9월 동해에서 수행된 초장거리 대역확산 수중음향통신의 해상실험 결과를 제시한다. 8개의 수직 배열 센서를 이용하여 수중음향통신 신호를 수집하였으며, 전송 거리는 160 km로 하였다. 송신 신호로 30 bps의 다중 코드 대역 확산 방식과 100 bps의 처프 대역확산 방식이 사용되었다. 실험 결과 단일 채널에서 채널 부호화 기법이 적용되지 않은 경우에 높은 비트 오류율을 나타내었으나 각 수신 채널에서 프레임 동기화를 수행한 후 신호들에 등이득 조합 다이버시티 기법을 적용하면 비부호화 비트 오류율이 순방향 오류 정정 한계인 0.1 이하로 감소하였다.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 연구비 지원(과제번호 : UD200010DD)으로 이루어졌습니다

References

  1. C. Salvador, S. Antonio, V. C. Juan, M. Nirvana, and J. S. Juan, "Underwater acoustic wireless sensor networks: advances and future trends in physical, mac and routing layers," Sensors, 14, 795-833 (2014). https://doi.org/10.3390/s140100795
  2. Y. Yan, W. Yanbo, Z. Min, L. Dong, and T. Jun, "Efficient on-off keying underwater acoustic communication for seafloor observation networks," Appl. Sci. 10, 1986 (2020). https://doi.org/10.3390/app10061986
  3. F. Mosca, G. Matte, and T. Shimura, "Low-frequency source for very long-range underwater communication," J. Acoust. Soc. Am. Express Letters, 133, (2013).
  4. T. C. Yang and W. Yang, "Low probability of detection underwater acoustic communications using direct sequence spread spectrum," J. Acoust. Soc. Am. 124, 3633-3647 (2008).
  5. T. C. Yang and W. Yang, "Performance analysis of direct-sequence spread spectrum underwater acoustic communications with low signal-to-noise ratio input signals," J. Acoust. Soc. Am. 123, 842-855 (2008). https://doi.org/10.1121/1.2828053
  6. Z. Liu, K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg, "Long range double differentially coded spread spectrum acoustic communication with a towed array," IEEE J. Oceanic Eng. 39, 482-490 (2014). https://doi.org/10.1109/joe.2013.2264994
  7. T. Shimura, Y. Watanabae, H. Ochi, and H. C. Song, "Long range time reversal communication in deep water : Experimental result," J. Acoust. Soc. Am. 132, 49-53 (2012). https://doi.org/10.1121/1.4730038
  8. A. Zhao, C. Zeng, J. Hui, L. Ma, and X. Bi, "Experimental demonstration of long-range underwater acoustic communication using a vertical sensor array," Sensors, 17, 1-12 (2017). https://doi.org/10.3390/s17010001
  9. J. Huang and R. Diamant, "Adaptive modulation for long-range underwater acoustic communication," IEEE Trans. Wireless Communications, 19, 6844-6857 (2020). https://doi.org/10.1109/twc.2020.3006230
  10. D. H. Kim, J. S. Kim, and J. Y. Hahn, "Verification of the feasibility of higher-order modulation for long-range communication in deep water" (in Korean), J. Acoust. Soc. Kr. 40, 428-438 (2021).
  11. H. I. Ra, J. H. An, C. H. Youn, K. M. Kim, and I. S. Kim, "Sea trial results of long range underwater acoustic communication based on direct sequence spread spectrum transmission in the East Sea" (in Korean), J. Acoust. Soc. Kr. 40, 304-313 (2021).
  12. S. G. Kim, S. Y. Sung, N. Y. Yun, C. H. Yun, and Y. K. Lim, "An implementation of signal processing platform for long-range underwater acoustic modem" (in Korean), Proc. Symp. the Korean Institute of Communications and Information Science, 490-491 (2017).
  13. J. H. Lee, G. H. Lee, K. M. Kim, and W. J. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea," (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
  14. C. He and J. Huang, "Underwater acoustic spread spectrum communication based on m family N group parallel transmission," Proc. MTS/IEEE Oceans Conf. 1-4 (2006).
  15. G. Yang, F. Zhou, G. Qiao, Y. Zhao, Y. Liu, Y. Lu, and Y. He, "Optimized Doppler estimation and symbol synchronization for mobile M-ary spread spectrum underwater acoustic communication," J. Marine Sci. Eng. 9, 1-23 (2021). https://doi.org/10.3390/jmse9010001
  16. F. Steinmetz, J. Heitmann, and C. Renner, "A practical guide to chirp spread spectrum for acoustic underwater communication in shallow water," Proc. in WUWNet. 1-8 (2018).
  17. C. U. Baek and J. W. Jung, "An efficient receiver structure based on PN performance in underwater acoustic communication" (in Korean), J. Navig. Port Res. 41, 173-180 (2017). https://doi.org/10.5394/KINPR.2017.41.4.173
  18. A. Annamalai, C. Tellambura, and V. K. Bhargava, "Equal-gain diversity receiver performance in wireless channels" IEEE Trans. Communications, 48, 1732-1745 (2010).
  19. H. W. Jeong, J. E. Shin, and J. W. Jung , "Performance analysis and experiment results of multiband FSK signal based on direct sequence spread spectrum method" (in Korean), J. Acoust. Soc. Kr. 40, 370-381 (2021).