DOI QR코드

DOI QR Code

Communication performance of selective combining frequency diversity with maximum likelihood estimation in underwater multipath frequency selective channels

수중 다중경로 주파수 선택적 채널에서 최대우도추정을 적용한 선택적합성 주파수 다이버시티의 통신 성능

  • 이채희 (부경대학교 정보통신공학과) ;
  • 박규칠 (부경대학교 정보통신공학과) ;
  • 박지현 (부경대학교 음향진동공학연구소)
  • Received : 2022.01.17
  • Accepted : 2022.03.08
  • Published : 2022.03.31

Abstract

In this paper, we evaluate the underwater frequency diversity communication performance of Selective Combination (SC) using Maximum Likelihood Estimation (MLE). In an underwater multipath frequency selective channel, destructive interference fading due to delay spread of a received signal affects the increase in error and Signal to Noise Ratio (SNR) variability of an underwater acoustic communication. Selective Combination frequency diversity using a single sensor is applied as a transmission performance improvement technique according to the frequency selectivity of a channel. In the sea experiment applying MLE for SC decision value extraction, we evaluate the performance of SC frequency diversity and MLE-SC frequency diversity. In experiment result, we confirm through experiment that the Bit Error Rate (BER) is relatively lower when the decision value extracted through MLE-SC is applied than when the SC decision value is fixed.

본 논문은 최대우도추정(Maximum Likelihood Estimation, MLE)을 적용한 선택적 합성법(Selective Combining, SC)의 수중 주파수 다이버시티 통신성능을 평가하였다. 수중 다중경로 주파수 선택적 채널에서 수신 신호의 지연확산에 따른 상쇄 간섭 페이딩(destructive interference fading)은 수중 음향 통신 시스템의 오류 증가와 신호대잡음비(Signal to Noise Ratio, SNR)변동성에 영향을 준다. SC의 결정 값 추출을 위한 MLE 적용 해상실험에서 SC 주파수 다이버시티와 MLE-SC 주파수 다이버시티 성능을 평가하였다. SC보다 MLE-SC를 통해 추출한 결정 값을 적용한 경우 상대적으로 낮은 BER(Bit Error Rate) 특성을 확인하였다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. NRF-2019R1I1A 1A01063575).

References

  1. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization," IEEE Commun. Mag. 47, 84-89 (2009). https://doi.org/10.1109/MCOM.2009.4752682
  2. J. Park, K. C. Park, and J. R. Yoon, "Underwater acoustic communication channel simulator for flat fading," Jpn. J. Appl. Phys. 49, 07HG101-4 (2010).
  3. M. Bae, J. Park, J. Kim, D. Xue, K. C. Park, and J. R. Yoon, "Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths," Jpn. J. Appl. Phys. 55, 07KG031-7 (2016).
  4. J. Park, J. R. Yoon, and J. S. Park, "Frequency and temporal coherence variation for sea surface fluctuation," Jpn. J. Appl. Phys. 48, 07GL031-3 (2009).
  5. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean. Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  6. K. C. Park, J. Park, S. W. Lee, J. W. Jung, J. Shin, and J. R. Yoon, "Performance evaluation of underwater acoustic communication in frequency selective shallow water," J. Acoust. Soc. Kr. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
  7. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2014), pp. 821-839.
  8. T. XU and L. XU, Digital Underwater Acoustic Communications (Elsevier, Amsterdam, 2014), pp. 154-156.
  9. W. B. Yang and T. C. Yang, "Characterization and modeling of underwater acoustic communications channels for frequency-shift-keying signals," Proc. IEEE OCEANS. 1 (2006).
  10. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (John Wiley & Sons Inc, New York, 2000), pp. 435-470.
  11. Russell B. Millar, Maximum Likelihood Estimation and Inference (John Wiley & Sons Inc, New York, 2011), pp. 101-120.