DOI QR코드

DOI QR Code

Development of Sealing Technology for Far-Infrared Multispectral ZnS Using Chalcogenide Glass Material

  • Soyoung, Kim (Optical Lens Materials Research Center, Korea Photonics Technology Institute) ;
  • Jung-Hwan, In (Optical Lens Materials Research Center, Korea Photonics Technology Institute) ;
  • Karam, Han (Optical Lens Materials Research Center, Korea Photonics Technology Institute) ;
  • Yoon Hee, Nam (Optical Lens Materials Research Center, Korea Photonics Technology Institute) ;
  • Seon Hoon, Kim (Optical Lens Materials Research Center, Korea Photonics Technology Institute) ;
  • Ju Hyeon, Choi (Optical Lens Materials Research Center, Korea Photonics Technology Institute)
  • Received : 2022.11.30
  • Accepted : 2022.12.06
  • Published : 2022.12.27

Abstract

Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 ℃ for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 ㎛. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.

Keywords

Acknowledgement

This work was supported by the Agency for Defense Development (ADD) by the Korea Government (Project No.: UD210011GD).

References

  1. W. Wang, Y. Xiao, X. Wu and J. Zhang, Opt. Laser Technol., 77, 111 (2016). 
  2. R. Cruz, J. A. da C. Ranita, J. Macaira, F. Ribeiro, A. M. B. da Silva, J. M. O. M. Helena, F. V. Fernandes, H. A. Ribeiro, J. G. Mendes and A. Mendes, IEEE Trans. Compon., Packag., Manuf. Technol., 2, 1949 (2012). 
  3. F. Ribeiro, J. Macaira, R. Cruz, J. Gabriel, L. Andrade and A. Mendes, Sol. Energy Mater. Sol. Cells, 96, 43 (2012). 
  4. A. Sharif, C. L. Gan and Z. Chen, Microelectron. Reliab., 54, 2905 (2014). 
  5. F. Bardin, S. Kloss, C. Wang, A. J. Moore, A. Jourdain and I. D. Wolf, J. Microelectromech. Syst., 16, 571 (2007). 
  6. S. Kim, J. Park, S. H. Kim, L. Kadathala, J. H. Baek, J. H. Kim and J. H. Choi, Appl. Sci., 10, 353 (2020). 
  7. S. Kim, K. Han, S. H. Kim, L. Kadathala, J. H. Kim and J. H. Choi, Appl. Sci., 11, 4603 (2021). 
  8. A. Kaswan, V. Kumari, D. Patidar, N. S. Saxena and K. Sharma, New J. Glass Ceram., 3, 99 (2013). 
  9. MatWeb home Page. Retrieved December, 2022 from https://www.matweb.com/search/MaterialGroupSearch.aspx 
  10. C. Jiang, X. Wang, Q. Zhu, Q. Nie, M. Zhu, P. Zhang, S. Dai, X. Shen, T. Xu, C. Cheng, F. Liao, Z. Liu and X. Zhang, Infrared Phys. Technol., 73, 54 (2015).  https://doi.org/10.1016/j.infrared.2015.09.001
  11. E. Petracovschi, M. Hubert, J.-L. Adam, X.-H. Zhang and L. Calvez, Phys. Status Solidi B, 251, 1330 (2014).  https://doi.org/10.1002/pssb.201350232
  12. Masterbond home Page. Retrieved November, 2022 from https://www.masterbond.com/search/wettability 
  13. F. Grzegorzewski, Ph. D. Thesis (in English), p. 80-81, Inst. Lebensmitteltechnologie und Lebensmittelchemie, Berlin (2011). 
  14. I. G. Kim, J. H. Kim, J. Y. Jung, S. Y. Choi, H. J. Park and B. K. Ryu, J. Ceram. Soc. Jpn., 122, 940 (2015). 
  15. A. Della Bona and R. van Noort, J. Dent. Res., 74, 1591 (1995).