• Title/Summary/Keyword: infrared materials

Search Result 1,079, Processing Time 0.025 seconds

Infrared Radiation Properties for SiO2 Films Made by Sol-Gel Process (졸-겔법으로 제조된 SiO2막의 적외선 복사특성에 관한 연구)

  • Kang, Byung-chul;Kim, Young-geun;Kim, Ki-ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.697-702
    • /
    • 2003
  • FT-IR and thermograph were used to investigate the infrared radiation characteristics of $SiO_2$film made by the sol-gel method. FT-IR spectrum of the $SiO_2$film showed high infrared absorption by Si-O-Si vibration at 1220, 1080, 800 and cm$460^{-1}$ The infrared absorption and radiation wavelength ranges of the $SiO_2$film measured by the integration method coincided with the reflection method, and the infrared emissivity was 0.65, equally. Depending on the bonding of elements, the infrared emissivity was high in the wavelength range where the infrared absorption rate was high, that follows the Kirchhoff's law. The emissivity showed the highest value in the wavelength range between $8∼10\mu\textrm{m}$. $SiO_2$film was considered as an efficient materials for infrared radiator at temperature below 10$0^{\circ}C$. The heat radiation temperature was $117^{\circ}C$ for the aluminum plate, but $146^{\circ}C$ for the $SiO_2$film after 7 minutes heat absorption, consiquently, $29^{\circ}C$ higher than the former.

Fabrication of Ceramic Particles Deposited Nano-web using Electrospinning Process and Its Far-infrared Ray Emission Property (원적외선 방출 특성을 갖는 나노 웹의 제조 및 원적외선 방사 특성에 관한 연구)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • The interest in textile which has far-infrared ray emissive property has been increased in the field of biophysics and medicine. In this study, far-infrared ray emissive polyurethane nano-web was obtained using electrospinning of polyurethane(PU) solution mixed with ceramics powder and far-infrared ray emissive properties of nano-web were evaluated by measuring far-infrared ray emission power and emissivity(%). To investigate the influence of concentration of ceramics powder in PU solution and temperature for far-infrared ray emissive properties, far-infrared ray emissivity was measured at varied temperature using various nano-web including varied concentration of ceramics powder. Polyurethane nano-web was characterized by SEM to observe the deposition of ceramics powder on polyurethane nano-web surface. The far-infrared ray emissivity was increased with the concentration of ceramics powder in the nano-web. The far-infrared ray emission power was enhanced with increasing temperature of the samples; however, far-infrared ray emissivity was decreased with increasing temperature because the increase of emission power of ceramic containing nano-web was lower than the emission power of black body one.

Optimization of sintering process of the far-infrared radiation ceramic (원적외선 방사 세라믹의 소결공정 최적화)

  • Park, Jae Hwa;Kim, Hyun Mi;Kang, Hyo Sang;Choi, Jae Sang;Choi, Bong Geun;Nam, Ki Woong;Nam, Han Woo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • Far-infrared radiation ceramic is an attractive material that provides thermal therapy by permeating the infrared rays into the deep inside of the human skin. Therefore, it is currently used for thermal therapy devices, thermal mat, heating equipment and so on. This work aims to optimize the sintering process of the far-infrared radiation ceramic with the process parameters of temperature and time. A variety of characterization tools have been used to investigate the optimal sintering condition of far-infrared radiation. The phase of far-infrared radiation ceramic was characterized by using X-ray diffraction (XRD) and microstructure of fracture surface was studied by scanning electron microscopy (SEM). The FT-IR was also performed to measure the far-infrared emissivity.

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

Comparison of Near-Infrared Spectroscopy with Raman Spectroscopy from the Point of Nondestructive Analysis of Biological Materials

  • Takeyuki Tanaka;Hidetoshi Sato;Jung, Young-Mee;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 2000
  • Recently, near-infrared (NIR) spectroscopy and Raman spectroscopy have received keen interest as powerful techniques for nondestructive analysis of biological materials. The purpose of this review paper is to compare the advantages of NIR and Raman spectroscopy in the nondestructive analysis. Both methods are quite unique and often complementary. For example. NIR spectroscopy is very useful in monitoring in situ the content of components inside biological materials while Raman spectroscopy is very suitable for identifying micro-components on the surface of biological materials. In this article specific characters of the two spectroscopic methods are discussed first and then several examples of applications of NIR and Raman spectroscopy to the biological nondestructive analysis are introduced.

Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens (적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성)

  • Sang-Jin Park;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.414-421
    • /
    • 2023
  • Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

Preparation and Characterization of Low Infrared Emissivity Bicomponent Fibers with Radar Absorbing Property (레이더 흡수특성이 있는 저적외선 방출 복합섬유의 제조 및 특성 연구)

  • Yu Bin;Qi Lu
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Heavy weight of the camouflage materials was always the main problem. To solve it, the low infrared emissivity fibers with the radar absorbing property (LIFR) were prepared. The low infrared emissivity fibers (LIF) were firstly melt-spun by co-extrusion of polypropylene (PP) and PP/various fillers master-batches using general conjugate spinning. The infrared emissivity of LW with AA and ZnO was decreased respectively compared with that of pure polypropylene fibers. The infrared emissivity of LIF with 15 wt% Al and 2 wt% ZnO in the sheath-part can reach 0.58. To improve LIF radar absorbing property, LIFR was prepared by filling the 50 wt% ferrite and bronze in the core-part of LIF. The radar absorbing efficacy of LIFR was good and the infrared emissivity was low. For the characterization, fiber electron intensity instrument and differential scanning calorimetry (DSC) were used for the analysis of mechanical properties, thermal and crystallization behavior of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe the particle distribution of the bicomponent fibers.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.