DOI QR코드

DOI QR Code

Anti-Melanogenic Activities of Ranunculus chinensis Bunge via ERK1/2-Mediated MITF Downregulation

  • Min-Jin, Kim (Nakdonggang National Institute of Biological Resources) ;
  • Yong Tae, Jeong (Nakdonggang National Institute of Biological Resources) ;
  • Buyng Su, Hwang (Nakdonggang National Institute of Biological Resources) ;
  • Yong, Hwang (Nakdonggang National Institute of Biological Resources) ;
  • Dae Won, Jeong (Nakdonggang National Institute of Biological Resources) ;
  • Yeong Taek, Oh (Nakdonggang National Institute of Biological Resources)
  • Received : 2022.09.01
  • Accepted : 2022.10.11
  • Published : 2022.12.01

Abstract

Research on whitening materials using natural alternatives is actively being conducted. The aim of this study was to investigate the in vitro inhibitory effects of Ranunculus chinensis Bunge (RCB) on melanogenesis and associated enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 murine melanoma cells. We found that RCB extract significantly attenuated melanin synthesis and reduced the activity of intracellular tyrosinase, a rate-limiting melanogenic enzyme. Western blot analysis showed that RCB extract decreased the protein expression of tyrosinase and TRP-1. In addition, it significantly decreased the expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanogenesis. Extracellular signal-regulated kinase (ERK) activation has been reported to be involved in the inhibition of melanogenesis. Thus, we investigated whether the hypopigmentary effects of RCB extract were related to the activation of ERK. RCB extract induced ERK phosphorylation in a dose-dependent manner. Furthermore, it markedly inhibited body pigmentation in a zebrafish model. Our results suggest that RCB extract inhibits melanogenesis by activating ERK pathway-mediated suppression of MITF and its downstream target genes, including tyrosinase. Therefore, RCB extract can be used as a whitening agent in the development of functional cosmetics.

Keywords

Acknowledgement

This work was supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202202110).

References

  1. Busca, R. and R. Ballotti. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13:60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  2. Busca, R., C. Bertolotto, J.P. Ortonne and R. Ballotti. 1996. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol Chem. 271:31824-31830. https://doi.org/10.1074/jbc.271.50.31824
  3. Chang, C.J., C.S. Lin, C.C Lu, J. Martel, Y.F. Ko, D.M. Ojcius, S.F. Tseng, T.R. Wu, Y.M. Chen, J.D. Young and H.C. Lai. 2015. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 23:7489.
  4. Gunia-Krzyzak, A., J. Popiol and H. Marona. 2016. Melanogenesis inhibitors: strategies for searching for and evaluation of active compounds. Curr. Med. Chem. 23:3548-3574. https://doi.org/10.2174/0929867323666160627094938
  5. Hosoi, J., E. Abe, T. Suda and T. Kuroki. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1α,25- dihydroxyvitamin D3 and retinoic acid. Cancer. Res. 45: 1474-1478.
  6. Hwang, E.S., T.H. Lee, W.J. Lee, W.S. Shim, E.J. Yeo, S.H. Kim and S.Y. Kim. 2016. A novel synthetic piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment. Cell Melanoma. Res. 29:81-91. https://doi.org/10.1111/pcmr.12430
  7. Hyun, H.B., H.J. Hyeon, S.C. Kim, B.R. Go, S.A. Yoon, Y,H Jung and Y.M. Ham. 2021. Anti-melanogenesis effects of Schizophragma hydrangeoides leaf ethanol extracts via downregulation of tyrosinase activity. Korean J. Plant Res. 34:510-516.
  8. Ivanova, D., D. Gerova, T. Chervenkov and T. Yankova. 2005. Polyphenols and antioxidant capacity of bulgarian medicinal plants. J. Ethnopharmacol. 96:145-150. https://doi.org/10.1016/j.jep.2004.08.033
  9. Jinpeng, L., S. Jiang, Y. Yang, X. Zhang, R. Gao, Y. Cao and G. Song. 2020. FGIN-1-27 inhibits melanogenesis by regulating protein kinase A/cAMP-responsive element-binding, protein Kinase C-β, and mitogen-activated protein kinase pathways. Front. Pharmacol. 11: 602889.
  10. Lee, D.Y., J.S. Lee, Y.T. Jeong, G.H. Byun and J.H. Kim. 2017. Melanogenesis inhibition activity of floralginsenoside a from Panax ginseng berry. J. Gingeng Res. 41:602-607. https://doi.org/10.1016/j.jgr.2017.03.005
  11. Levy, C., M. Khaled and D.E Fisher. 2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends. Mol. Med. 12:406-414. https://doi.org/10.1016/j.molmed.2006.07.008
  12. MacRae, C.A. and R.T Peterson. 2015. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14:721-731. https://doi.org/10.1038/nrd4627
  13. Mas, J.S., I. Gerritsen, C. Hahmann, C. Jimenez-Cervantes and J.C. Garcia-Borron. 2003. Rate limiting factors in melanocortin 1 receptor signalling through the cAMP pathway. Pigment. Cell Res. 16:540-547. https://doi.org/10.1034/j.1600-0749.2003.00073.x
  14. Nigel, W. and Y.E. Feng. 1998. A Practical Dictionary of Chinese Medicine (English and Chinese edition). Subsequent edition, Paradigm Pubns, NM (USA).
  15. Ohguchi, K., Y. Akao and Y. Nozawa. 2006. Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci. Biotechnol. Biochem. 70:1499-1501. https://doi.org/10.1271/bbb.50635
  16. Park, J.U., S.Y. Yang, R.H. Guo, H.X. Li, Y.H. Kim and Y.R. Kim. 2020. Anti-melanogenic effect of Dendropanax morbiferus and its active components via protein kinase A/cyclic adenosine monophosphate-responsive binding protein- and p38 mitogen-activated protein kinase-mediated microphthalmia-associated transcription factor downregulation. Front. Pharmacol. 11:507.
  17. Price, E.R., H.F. Ding, T. Badalian, S. Bhattacharya, C. Takemoto, T.P. Yao, T.J. Hemesath and D.E. Fisher. 1998. Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Biol. Chem. 273: 17983-17986. https://doi.org/10.1074/jbc.273.29.17983
  18. Qiyun, W., A.H.Y. Fung., M.L. Xu, K. Poon, E.Y.L. Liu, X.P. Kong, P. Yao, Q.P. Xiong, T.T.X. Dong and K.W.K. Tsim. 2018. Microphthalmia-associated transcription factor upregulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J. Biol. Chem. 293: 14417-14428. https://doi.org/10.1074/jbc.RA118.003729
  19. Rannekamp, A.J. and R.T Peterson. 2015. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24:58-70. https://doi.org/10.1016/j.cbpa.2014.10.025
  20. Shibahara, S., K. Yasumoto, S. Amae, T. Udono, K. Watanabe, H. Saito and K. Takeda. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13: 98-102. https://doi.org/10.1034/j.1600-0749.13.s8.18.x
  21. Shin, Y.J., C.S. Han, C.S. Lee, H.S. Kim, S.H. Ko, S.K. Hwang, S.G. Ko, J.W. Shin, S.K. Ye and M.H. Chung. 2010. Zeolite 4A, a synthetic Silicate, suppresses melanogenesis through the degradation of microphthalmia-associated transcription factor by extracellular signal-regulated kinase activation in B16F10 melanoma cells. Biol. Pharm. Bull. 33:72-76. https://doi.org/10.1248/bpb.33.72
  22. Solano, F. 2014. Melanins: skin pigments and much more - types, structural models, biological functions, and formation routes. New J. Sci. 2014:28.
  23. Solano, F., S. Briganti, M. Picardo and G. Ghanem. 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19:550-571. https://doi.org/10.1111/j.1600-0749.2006.00334.x
  24. Sugumaran, M. 2016. Reactivities of quinone methides versus o-quinones in catecholamine metabolism and eumelanin biosynthesis. Int. J. Mol. Sci. 17:1576.
  25. Sun, L.J., C. Guo, L. Yan, H. Li, J. Sun, X. Huo, X. Xie and J. Hu1. 2020. Syntenin regulates melanogenesis via the p38 MAPK pathway. Mol. Med. Rep. 22:733-738. https://doi.org/10.3892/mmr.2020.11139
  26. Videira, I.F., D.F. Moura and S. Magina. 2013. Mechanisms regulating melanogenesis. An Bras. Dermatol. 88:76-83. https://doi.org/10.1590/S0365-05962013000100009
  27. Vontzalidou, A., G. Zoidis, E. Chaita, M. Makropoulou, N. Aligiannis, G. Lambrinidis, E. Mikros and A.L. Skaltsounis. 2012. Design, synthesis and molecular studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 22:5523-5526. https://doi.org/10.1016/j.bmcl.2012.07.029
  28. Whitney, P.B. and S. Pugliese. 2014. Cosmetic benefits of natural ingredients. J. Drugs Dermatol. 13:1021-1025.
  29. Yaar, M., C. Wu, H.Y. Park, L. Panova, G. Schutz and B.A. Gilchrest. 2006. Bone morphogenetic protein-4, a novel modulator of melanogenesis. J. Biol. Chem. 281:25307-25314. https://doi.org/10.1074/jbc.M600580200
  30. Yuma, W., K. Ogino and H. Hirata. 2019. Swimming capability of zebrafish is governed by water temperature, caudal fin length and genetic background. Sci. Rep. 9:16307.