DOI QR코드

DOI QR Code

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice

  • Na Gyeong, Geum (Department of Medicinal Plant Resources, Andong National University) ;
  • Ju Hyeong, Yu (Department of Medicinal Plant Resources, Andong National University) ;
  • So Jung, Park (Department of Medicinal Plant Resources, Andong National University) ;
  • Min Yeong, Choi (Department of Medicinal Plant Resources, Andong National University) ;
  • Jae Won, Lee (Department of Medicinal Plant Resources, Andong National University) ;
  • Gwang Hun, Park (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Hae-Yun, Kwon (Special Forest Resources Division, National Institute of Forest Science) ;
  • Jin Boo, Jeong (Department of Medicinal Plant Resources, Andong National University)
  • Received : 2022.05.31
  • Accepted : 2022.06.28
  • Published : 2022.12.01

Abstract

Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

Keywords

Acknowledgement

This work was supported by a grant from National Institute of Forest Science in 2021 (project number: FG0403-2018-01-2021) and R&D Program for Forest Science Technology (Project No. 2021377C10-2123-BD02) provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Aliyu, M., F. Zohora and A.A. Saboor-Yaraghi. 2021. Spleen in innate and adaptive immunity regulation. AIMS Allergy Immunol. 5(1):1-17.
  2. Bai, Y., Y. Jiang, T. Liu, F. Li, J. Zhang, Y. Luo, L. Zhang, G. Yan, Z. Feng, X. Li, X. Wang and W. Hu. 2019. Xinjiang herbal tea exerts immunomodulatory activity via TLR2/4-mediated MAPK signalling pathways in RAW264.7 cells and prevents cyclophosphamide-induced immunosuppression in mice. J. Ethnopharmacol. 228:179-187. https://doi.org/10.1016/j.jep.2018.09.032
  3. Geng, L., W. Hu, Y. Liu, J. Wang and Q. Zhang. 201 8. A heteropolysaccharide from Saccharina japonica with immunomodulatory effect on RAW264.7 cells. Carbohydr. Polym. 201:557-565.
  4. Geum, N.G., J.H. Yu, J.H. Yeo, M.Y. Choi, J.W. Lee, J.K. Baek and J.B. Jeong. 2021. Immunostimulatory activity and anti-obesity activity of Hibiscus manihot leaves in mouse macrophages, RAW264.7 cells and mouse adipocytes, 3T3-L1 cells. J. Funct. Foods 87:104803.
  5. Hong, S.H., J.M. Ku, H.I. Kim, C.W. Ahn, S.H. Park, H.S. Seo, Y.C. Shin and S.G. Ko. 2017. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res. Int. 99(1):623-629. https://doi.org/10.1016/j.foodres.2017.06.053
  6. Karunarathne, W.A.H.M., K.T. Lee, Y.H. Choi, C.Y. Jin and G.Y. Kim. 2020. Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-κB signaling pathway. Phytomedicine 76:153237.
  7. Kasimu, R., C. Chen, X. Xie and X. Li. 2017. Water-soluble polysaccharide from Erythronium sibiricum bulb: structural characterisation and immunomodulating activity. Int. J. Biol. Macromol. 105:452-462. https://doi.org/10.1016/j.ijbiomac.2017.07.060
  8. Ma, X.L., M. Meng, L.R. Han, D. Cheng, X.H. Cao andC.L. Wang. 2016. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κb pathways. Food Funct. 7:2763-2772. https://doi.org/10.1039/C6FO00279J
  9. Moynagh, P.N. 2005. TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol. 26(9):469-479.
  10. Ren, Z., T. Qin, F. Qiu, T. Song, D. Lin, Y. Ma, J. Li and Y. Huang. 2017. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW 264.7. Int. J. Biol. Macromol. 105(1):879-885. https://doi.org/10.1016/j.ijbiomac.2017.07.104
  11. Shen, C.Y., W.L. Zhang and J.G. Jiang. 2017. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kB signaling pathways in RAW264.7 cells. J. Funct. Foods 34:118-129. https://doi.org/10.1016/j.jff.2017.03.060
  12. Shi, L.S., C.H. Wu, T.C. Yang, C.W. Yao, H.C. Lin and W.L. Chang. 2014. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia 97:184-191. https://doi.org/10.1016/j.fitote.2014.05.006
  13. Siveen, K.S. and G. Kuttan. 2009. Role of macrophage in tumour progression. Immunol. Lett. 123:97-102. https://doi.org/10.1016/j.imlet.2009.02.011
  14. Swanson, L., G.D. Katkar, J. Tam, R.F. Pranadinata, Y. Chareddy, J. Coates, M.S. Anandachar, V. Castillo, J. Olson, V. Nizet, I. Kufareva, S. Das and P. Ghosh. 2020. TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin. PNASU. 117(43):26895-26906. https://doi.org/10.1073/pnas.2011667117
  15. We, M., T. Cheng, S. Cheng, T. Lian, L. Wang and S. Chiou. 2006. Immunomodulatory properties of Grifola frondosa in submerged culture. J. Agri. Food Chem. 54:2906-2914. https://doi.org/10.1021/jf052893q
  16. Yang, F., X. Li, Y. Yang, S.M. Ayivi-Tosuh, F. Wang, H. Li and G. Wang. 2019. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 140:895-906. https://doi.org/10.1016/j.ijbiomac.2019.08.174
  17. Yu, J.H., N.G. Geum, J.H. Yeo and J.B. Jeong. 2021. Immunoenhancing and anti-obesity effect of Abelmoschus manihot root extracts. Korean J. Plant Res. 34(5):411-419. https://doi.org/10.7732/KJPR.2021.34.5.411
  18. Yu, Z., M. Kong, P. Zhang, Q. Sun and K. Chen. 2016. Immune-enhancing activity of extracellular polysaccharides isolated from Rhizopus nigricans. Carbohydr. Polym. 148:318-325. https://doi.org/10.1016/j.carbpol.2016.04.068
  19. Zha, Z., S.Y. Wang, W. Chu, Y. Lv, H. Kan, Q. Chen, L. Zhong, L. Yue, J. Xiao, Y. Wang and H. Yin. 2018. Isolation, purification, structural characterization and immunostimulatory activity of water-soluble polysaccharides from Lepidium meyenii. Phytochemistry 147:184-193. https://doi.org/10.1016/j.phytochem.2018.01.006
  20. Zhang, S., S. Nie, D. Huang, J. Huang, Y. Wang and M. Xie. 2013. Polysaccharide from Ganoderma atrum evokes antitumor activity via toll-like receptor 4-mediated NF-κB and mitogen-activated protein kinase signaling pathways. J. Agri. Food Chem. 61:3676-3682. https://doi.org/10.1021/jf4004225
  21. Zhou, R., L. Teng, Y. Zhu, C, Zhang, Y. Yang and Y. Chen. 2021. Preparation of Amomum longiligulare polysaccharides 1- PLGA nanoparticle and its immune enhancement ability on RAW264.7 cells. Int. Immunopharmacol. 99:108053.