Acknowledgement
We would like to dedicate this work to the memory of the late Professor Kyung-Saeng Boo. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Republic of Korea (Grant no. NRF-2020R1I1A2070399).
References
- Abisgold, J.D., Simpson, S.J., Douglas, A.E., 1994. Nutrient regulation in the pea aphid Acyrthosiphon pisum: application of a novel geometric framework to sugar and amino acid consumption. Physiol. Entomol. 19, 95-102. https://doi.org/10.1111/j.1365-3032.1994.tb01081.x
- Al Shareefi, E., Cotter, S.C., 2019. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256-266. https://doi.org/10.1093/beheco/ary142
- Alton, L.A., Kutz, T.C., Bywater, C.L., Beaman, J.E., Arnold, P.A., Mirth, C.K., Sgro, C.M., White, C.R., 2020. Developmental nutrition modulates metabolic responses to projected climate change. Funct. Ecol. 34, 2488-2502. https://doi.org/10.1111/1365-2435.13663
- Behmer, S.T., 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165-187. https://doi.org/10.1146/annurev.ento.54.110807.090537
- Behmer, S.T., Joern, A., 2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U.S.A. 105, 1977-1982. https://doi.org/10.1073/pnas.0711870105
- Bonduriansky, R., Runagall-McNaull, A., Crean, A.J., 2016. The nutritional geometry of parental effects: maternal and paternal macronutrient consumption and offspring phenotype in a neriid fly. Funct. Ecol. 30, 1675-1686. https://doi.org/10.1111/1365-2435.12643
- Bowman, E., Tatar, M., 2016. Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: implications for aging. Nutr. Healthy Aging. 4, 55-61. https://doi.org/10.3233/NHA-1613
- Bruce, K.D., Hoxha, S., Carvalho, G.B., Yamada, R., Wang, H.D., Karayan, P., He, S., Brummel, T., Kapahi, P., Ja, W.W., 2013. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp. Gerontol. 48, 1129-1135. https://doi.org/10.1016/j.exger.2013.02.003
- Camus, M.F., Fowler, K., Piper, M.W.D., Reuter, M., 2017. Sex and genotype effects on nutrient-dependent fitness landscapes in Drosophila melanogaster. Proc. Royal Soc. B 284, 20172237. https://doi.org/10.1098/rspb.2017.2237
- Camus, M.F., Huang, C.C., Reuter, M., Fowler, K., 2018. Dietary choices are influenced by genotype, mating status, and sex in Drosophila melanogaster. Ecol. Evol. 8, 5385-5393. https://doi.org/10.1002/ece3.4055
- Cavigliasso, F., Dupuis, C., Savary, L., Spangenberg, J.E., Kawecki, T.J., 2020. Experimental evolution of post-ingestive nutritional compensation in response to a nutrient-poor diet. Proc. Royal Soc. B 287, 20202684. https://doi.org/10.1098/rspb.2020.2684
- Chapman, R.F., 2013. The insects: structure and function, 5th ed., Cambridge University Press, Cambridge.
- Cheon, D.A., Jang, T., Lee, K.P., 2022. Visualising the nutritional performance landscapes for the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). J. Insects Food Feed in press.
- Chown, S.L., Nicolson, S.W., 2004. Insect physiological ecology: mechanisms and patterns, Oxford University Press, Oxford.
- Cotter, S.C., Simpson, S.J., Raubenheimer, D., Wilson, K., 2011. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct. Ecol. 25, 186-198. https://doi.org/10.1111/j.1365-2435.2010.01766.x
- Dussutour, A., Latty, T., Beekman, M., Simpson, S.J., 2010. Amoeboid organism solves complex nutritional challenges. Proc. Natl. Acad. Sci. U.S.A. 107, 4607-4611. https://doi.org/10.1073/pnas.0912198107
- Fanson, B.G., Taylor, P.W., 2012. Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age 34, 1361-1368. https://doi.org/10.1007/s11357-011-9308-3
- Fanson, B.G., Weldon, C.W., Perez-Staples, D., Simpson, S.J., Taylor, P.W., 2009. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514-523. https://doi.org/10.1111/j.1474-9726.2009.00497.x
- Flatt, T., 2011. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369-375. https://doi.org/10.1016/j.exger.2010.10.008
- Flatt, T., Heyland, A., 2011. Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs, Oxford University Press, Oxford.
- Gosby, A.K., Conigrave, A.D., Raubenheimer, D., Simpson, S.J., 2014. Protein leverage and energy intake. Obes. Rev. 15, 183-191. https://doi.org/10.1111/obr.12131
- Gray, L.J., Simpson, S.J., Polak, M., 2018. Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate. J. Insect Physiol. 104, 60-70. https://doi.org/10.1016/j.jinsphys.2017.11.010
- Gullan, P.J., Cranston, P.S., 2014. The insects: an outline of entomology, John Wiley & Sons, New York.
- Harrison, J.F., Woods, H.A., Roberts, S.P., 2012. Ecological and environmental physiology of insects, Oxford University Press, Oxford.
- Harrison, S.J., Raubenheimer, D., Simpson, S.J., Godin, J.-G.J., Bertram, S.M., 2014. Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proc. Royal Soc. B 281, 20140539. https://doi.org/10.1098/rspb.2014.0539
- Hawlena, D., Schmitz, O.J., 2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc. Natl. Acad. Sci. U.S.A. 107, 15503-15507. https://doi.org/10.1073/pnas.1009300107
- Holmes, A.J., Chew, Y.V., Colakoglu, F., Cliff, J.B., Klaassens, E., Read, M.N., Solon-Biet, S.M., McMahon, A.C., Cogger, V.C., Ruohonen, K., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2017. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 25, 140-151. https://doi.org/10.1016/j.cmet.2016.10.021
- Jang, T., Lee, K.P., 2018. Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets. J. Exp. Biol. 221, jeb181115. https://doi.org/10.1242/jeb.181115
- Jensen, K., Kristensen, T., Heckmann, L.-H., Sorensen, J., 2017. Breeding and maintaining high-quality insects, in: van Huis, A., Tomberlin, J.K. (Eds.), Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, pp. 175-198.
- Jensen, K., Mayntz, D., Toft, S., Clissold, F.J., Hunt, J., Raubenheimer, D., Simpson, S.J., 2012. Optimal foraging for specific nutrients in predatory beetles. Proc. Royal Soc. B 279, 2212-2218. https://doi.org/10.1098/rspb.2011.2410
- Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D., Simpson, S.J., 2011. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81, 993-999. https://doi.org/10.1016/j.anbehav.2011.01.035
- Jensen, K., McClure, C., Priest, N.K., Hunt, J., 2015. Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14, 605-615. https://doi.org/10.1111/acel.12333
- Kapahi, P., Chen, D., Rogers, A.N., Katewa, S.D., Li, P.W., Thomas, E.L., Kockel, L., 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453-465. https://doi.org/10.1016/j.cmet.2010.05.001
- Kim, K., Jang, T., Min, K.-J., Lee, K.P., 2020. Effects of dietary protein:carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomol. Exp. Appl. 168, 482-491. https://doi.org/10.1111/eea.12855
- Kirkwood, T.B.L., 2005. Understanding the odd science of aging. Cell 120, 437-447. https://doi.org/10.1016/j.cell.2005.01.027
- Koemel, N.A., Senior, A.M., Dissanayake, H.U., Ross, J., McMullan, R.L., Kong, Y., Phang, M., Hyett, J., Raubenheimer, D., Gordon, A., Simpson, S.J., Skilton, M.R., 2022. Maternal dietary fatty acid composition and newborn epigenetic aging - a geometric framework approach. Am. J. Clin. Nutr. 115, 118-127. https://doi.org/10.1093/ajcn/nqab318
- Kutz, T.C., Sgro, C.M., Mirth, C.K., 2019. Interacting with change: diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940-1951. https://doi.org/10.1111/1365-2435.13414
- Le Couteur, D.G., Solon-Biet, S., Cogger, V.C., Mitchell, S.J., Senior, A., de Cabo, R., Raubenheimer, D., Simpson, S.J., 2016. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237-1252. https://doi.org/10.1007/s00018-015-2120-y
- Lee, K.P., 2010. Sex-specific differences in nutrient regulation in a capital breeding caterpillar, Spodoptera litura (Fabricius). J. Insect Physiol. 56, 1685-1695. https://doi.org/10.1016/j.jinsphys.2010.06.014
- Lee, K.P., 2015. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet. J. Insect Physiol. 75, 12-19. https://doi.org/10.1016/j.jinsphys.2015.02.007
- Lee, K.P., Behmer, S.T., Simpson, S.J., 2006a. Nutrient regulation in relation to diet breadth: a comparison of Heliothis sister species and a hybrid. J. Exp. Biol. 209, 2076-2084. https://doi.org/10.1242/jeb.02253
- Lee, K.P., Behmer, S.T., Simpson, S.J., Raubenheimer, D., 2002. A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J. Insect Physiol. 48, 655-665. https://doi.org/10.1016/S0022-1910(02)00088-4
- Lee, K.P., Cory, J.S., Wilson, K., Raubenheimer, D., Simpson, S.J., 2006b. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. Royal Soc. B 273, 823-829. https://doi.org/10.1098/rspb.2005.3385
- Lee, K.P., Jang, T., Ravzanaadii, N., Rho, M.S., 2015. Macronutrient balance modulates the temperature-size rule in an ectotherm. Am. Nat. 186, 212-222. https://doi.org/10.1086/682072
- Lee, K.P., Kim, J.-S., Min, K.-J., 2013. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987-992. https://doi.org/10.1016/j.anbehav.2013.08.018
- Lee, K.P., Kwon, S.-T., Roh, C., 2012. Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Anim. Behav. 84, 785-793. https://doi.org/10.1016/j.anbehav.2012.06.033
- Lee, K.P., Raubenheimer, D., Behmer, S.T., Simpson, S.J., 2003. A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161-1171. https://doi.org/10.1016/j.jinsphys.2003.08.013
- Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W.O., Taylor, P.W., Soran, N., Raubenheimer, D., 2008. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc. Nat. Acad. Sci. U.S.A. 105, 2498-2503. https://doi.org/10.1073/pnas.0710787105
- Leulier, F., MacNeil, L.T., Lee, W., Rawls, J.F., Cani, P.D., Schwarzer, M., Zhao, L., Simpson, S.J., 2017. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab. 25, 522-534. https://doi.org/10.1016/j.cmet.2017.02.001
- Lihoreau, M., Buhl, J., Charleston, M.A., Sword, G.A., Raubenheimer, D., Simpson, S.J., 2014. Modelling nutrition across organizational levels: from individuals to superorganisms. J. Insect Physiol. 69, 2-11. https://doi.org/10.1016/j.jinsphys.2014.03.004
- Lihoreau, M., Buhl, J., Charleston, M.A., Sword, G.A., Raubenheimer, D., Simpson, S.J., 2015. Nutritional ecology beyond the individual: a conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273-286. https://doi.org/10.1111/ele.12406
- Machovsky-Capuska, G.E., Senior, A.M., Simpson, S.J., Raubenheimer, D., 2016. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355-365. https://doi.org/10.1016/j.tree.2016.02.009
- Mair, W., Piper, M.D.W., Partridge, L., 2005. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, e223. https://doi.org/10.1371/journal.pbio.0030223
- Maklakov, A.A., Simpson, S.J., Zajitschek, F., Hall, M.D., Dessmann, J., Clissold, F., Raubenheimer, D., Bonduriansky, R., Brooks, R.C., 2008. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr. Biol. 18, 1062-1066. https://doi.org/10.1016/j.cub.2008.06.059
- Masoro, E.J., 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913-922. https://doi.org/10.1016/j.mad.2005.03.012
- Matavelli, C., Carvalho, M.J.A., Martins, N.E., Mirth, C.K., 2015. Differences in larval nutritional requirements and female oviposition preference reflect the order of fruit colonization of Zaprionus indianus and Drosophila simulans. J. Insect Physiol. 82, 66-74. https://doi.org/10.1016/j.jinsphys.2015.09.003
- Mattson, W.J., 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119-161. https://doi.org/10.1146/annurev.es.11.110180.001003
- Mayntz, D., Nielsen, V.H., Sorensen, A., Toft, S., Raubenheimer, D., Hejlesen, C., Simpson, S.J., 2009. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349-355. https://doi.org/10.1016/j.anbehav.2008.09.036
- Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S., Simpson, S.J., 2005. Nutrient-specific foraging in invertebrate predators. Science 307, 111-113. https://doi.org/10.1126/science.1105493
- Min, K.-J., Tatar, M., 2006. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech. Ageing Dev. 127, 643-646. https://doi.org/10.1016/j.mad.2006.02.005
- Mirth, C.K., Nogueira Alves, A., Piper, M.D., 2019. Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. Curr. Opin. Insect Sci. 31, 49-57. https://doi.org/10.1016/j.cois.2018.08.006
- Moatt, J.P., Fyfe, M.A., Heap, E., Mitchell, L.J.M., Moon, F., Walling, C.A., 2019. Reconciling nutritional geometry with classical dietary restriction: effects of nutrient intake, not calories, on survival and reproduction. Aging Cell 18, e12868. https://doi.org/10.1111/acel.12868
- Moatt, J.P., Savola, E., Regan, J.C., Nussey, D.H., Walling, C.A., 2020. Lifespan extension via dietary restriction: time to reconsider the evolutionary mechanisms? BioEssays 42, 1900241. https://doi.org/10.1002/bies.201900241
- Morimoto, J., Lihoreau, M., 2019. Quantifying nutritional trade-offs across multidimensional performance landscapes. Am. Nat. 193, E168-E181. https://doi.org/10.1086/701898
- Nagarajan-Radha, V., Rapkin, J., Hunt, J., Dowling, D.K., 2019. Interactions between mitochondrial haplotype and dietary macronutrient ratios confer sex-specific effects on longevity in Drosophila melanogaster. Gerontol. A Biol. Sci. Med. Sci. 74, 1573-1581. https://doi.org/10.1093/gerona/glz104
- Nakagawa, S., Lagisz, M., Hector, K.L., Spencer, H.G., 2012. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 401-409. https://doi.org/10.1111/j.1474-9726.2012.00798.x
- Oonincx, D.G.A.B., 2017. Environmental impact of insect production, in: van Huis, A., Tomberlin, J.K. (Eds.), Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, pp. 79-93.
- Paoli, P.P., Donley, D., Stabler, D., Saseendranath, A., Nicolson, S.W., Simpson, S.J., Wright, G.A., 2014. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449-1458. https://doi.org/10.1007/s00726-014-1706-2
- Partridge, L., Gems, D., Withers, D.J., 2005. Sex and death: what is the connection? Cell 120, 461-472. https://doi.org/10.1016/j.cell.2005.01.026
- Piper, M.D.W., Partridge, L., Raubenheimer, D., Simpson, S.J., 2011. Dietary restriction and aging: a unifying perspective. Cell Metab. 14, 154-160. https://doi.org/10.1016/j.cmet.2011.06.013
- Piper, M.D.W., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., Simpson, S.J., Ribeiro, C., Partridge, L., 2017. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 610-621. https://doi.org/10.1016/j.cmet.2017.02.005
- Polak, M., Simmons, L.W., Benoit, J.B., Ruohonen, K., Simpson, S.J., Solon-Biet, S.M., 2017. Nutritional geometry of paternal effects on embryo mortality. Proc. Royal Soc. B 284, 20171492. https://doi.org/10.1098/rspb.2017.1492
- Povey, S., Cotter, S.C., Simpson, S.J., Lee, K.P., Wilson, K., 2009. Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J. Anim. Ecol. 78, 437-446. https://doi.org/10.1111/j.1365-2656.2008.01499.x
- Rapkin, J., Jensen, K., Archer, C.R., House, C.M., Sakaluk, S.K., Castillo, E. del, Hunt, J., 2018. The geometry of nutrient space-based life-history trade-offs: sex-specific effects of macronutrient intake on the trade-off between encapsulation ability and reproductive effort in decorated crickets. Am. Nat. 191, 452-474. https://doi.org/10.1086/696147
- Raubenheimer, D., Jones, S.A., 2006. Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Anim. Behav. 71, 1253-1262. https://doi.org/10.1016/j.anbehav.2005.07.024
- Raubenheimer, D., Mayntz, D., Simpson, S.J., Toft, S., 2007. Nutrient-specific compensation following diapause in a predator: implications for intraguild predation. Ecology 88, 2598-2608. https://doi.org/10.1890/07-0012.1
- Raubenheimer, D., Simpson, S.J., 1999. Integrating nutrition: a geometrical approach, in: Simpson, S.J., Mordue, A.J., Hardie, J. (Eds.), Proceedings of the 10th international symposium on insect-plant relationships. Springer Science and Business Media, Dordrecht, pp. 67-82.
- Raubenheimer, D., Simpson, S.J., 2003. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J. Exp. Biol. 206, 1669-1681. https://doi.org/10.1242/jeb.00336
- Raubenheimer, D., Simpson, S.J., 2016. Nutritional ecology and human health. Annu. Rev. Nutr. 36, 603-626. https://doi.org/10.1146/annurev-nutr-071715-051118
- Raubenheimer, D., Simpson, S.J., Mayntz, D., 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23, 4-16. https://doi.org/10.1111/j.1365-2435.2009.01522.x
- Raubenheimer, D., Simpson, S.J., Tait, A.H., 2012. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1628-1646. https://doi.org/10.1098/rstb.2012.0007
- Reddiex, A.J., Gosden, T.P., Bonduriansky, R., Chenoweth, S.F., 2013. Sex-specific fitness consequences of nutrient intake and the evolvability of diet preferences. Am. Nat. 182, 91-102. https://doi.org/10.1086/670649
- Rho, M.S., Lee, K.P., 2014. Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). J. Insect Physiol. 71, 37-45. https://doi.org/10.1016/j.jinsphys.2014.10.001
- Rho, M.S., Lee, K.P., 2015. Nutrient-specific food selection buffers the effect of nutritional imbalance in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). Eur. J. Entomol. 112, 251-258. https://doi.org/10.14411/eje.2015.030
- Rho, M.S., Lee, K.P., 2016. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). J. Insect Physiol. 91, 93-99. https://doi.org/10.1016/j.jinsphys.2016.07.002
- Rho, M.S., Lee, K.P., 2017. Temperature-driven plasticity in nutrient use and preference in an ectotherm. Oecologia 185, 401-413. https://doi.org/10.1007/s00442-017-3959-4
- Rho, M.S., Lee, K.P., 2022. Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: a geometric analysis. J. Insect Physiol. 136, 104329. https://doi.org/10.1016/j.jinsphys.2021.104329
- Rodrigues, M.A., Martins, N.E., Balance, L.F., Broom, L.N., Dias, A.J.S., Fernandes, A.S.D., Rodrigues, F., Sucena, E., Mirth, C.K., 2015. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69-80. https://doi.org/10.1016/j.jinsphys.2015.07.002
- Roff, D.A., 2002. Life history evolution, Oxford University Press, Oxford.
- Rosenblatt, A.E., Schmitz, O.J., 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965-975. https://doi.org/10.1016/j.tree.2016.09.009
- Ruohonen, K., Simpson, S.J., Raubenheimer, D., 2007. A new approach to diet optimisation: a re-analysis using European whitefish (Coregonus lavaretus). Aquaculture 267, 147-156. https://doi.org/10.1016/j.aquaculture.2007.02.051
- Sanz, A., Caro, P., Barja, G., 2004. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J. Bioenerg. Biomembr. 36, 545-552. https://doi.org/10.1007/s10863-004-9001-7
- Schmitz, O.J., Rosenblatt, A.E., Smylie, M., 2016. Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore. Ecology 97, 3119-3130. https://doi.org/10.1002/ecy.1524
- Scriber, J.M., Slansky, F., 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183-211. https://doi.org/10.1146/annurev.en.26.010181.001151
- Semaniuk, U., Feden'ko, K., Yurkevych, I.S., Storey, K.B., Simpson, S.J., Lushchak, O., 2018. Within-diet variation in rates of macronutrient consumption and reproduction does not accompany changes in lifespan in Drosophila melanogaster. Entomol. Exp. Appl. 166, 74-80. https://doi.org/10.1111/eea.12643
- Shik, J.Z., Kooij, P.W., Donoso, D.A., Santos, J.C., Gomez, E.B., Franco, M., Crumiere, A.J.J., Arnan, X., Howe, J., Wcislo, W.T., Boomsma, J.J., 2021. Nutritional niches reveal fundamental domestication trade-offs in fungus-farming ants. Nat. Ecol. Evol. 5, 122-134. https://doi.org/10.1038/s41559-020-01314-x
- Shikano, I., Cory, J.S., 2016. Altered nutrient intake by baculovirus-challenged insects: self-medication or compensatory feeding? J. Invertebr. Pathol. 139, 25-33. https://doi.org/10.1016/j.jip.2016.07.005
- Shingleton, A.W., Masandika, J.R., Thorsen, L.S., Zhu, Y., Mirth, C.K., 2017. The sex-specific effects of diet quality versus quantity on morphology in Drosophila melanogaster. R. Soc. Open Sci. 4, 170375. https://doi.org/10.1098/rsos.170375
- Silva-Soares, N.F., Nogueira-Alves, A., Beldade, P., Mirth, C.K., 2017. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 1-13. https://doi.org/10.1186/s12898-016-0111-y
- Simpson, S.J., Clissold, F.J., Lihoreau, M., Ponton, F., Wilder, S.M., Raubenheimer, D., 2015a. Recent advances in the integrative nutrition of arthropods. Annu. Rev. Entomol. 60, 293-311. https://doi.org/10.1146/annurev-ento-010814-020917
- Simpson, S.J., Le Couteur, D.G., James, D.E., George, J., Gunton, J.E., Solon-Biet, S.M., Raubenheimer, D., 2017. The geometric framework for nutrition as a tool in precision medicine. Nutr. Healthy Aging 4, 217-226. https://doi.org/10.3233/nha-170027
- Simpson, S.J., Le Couteur, D.G., Raubenheimer, D., 2015b. Putting the balance back in diet. Cell 161, 18-23. https://doi.org/10.1016/j.cell.2015.02.033
- Simpson, S.J., Raubenheimer, D., 1993. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 342, 381-402. https://doi.org/10.1098/rstb.1993.0166
- Simpson, S.J., Raubenheimer, D., 2005. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133-142. https://doi.org/10.1111/j.1467-789X.2005.00178.x
- Simpson, S.J., Raubenheimer, D., 2009. Macronutrient balance and lifespan. Aging 1, 875-880. https://doi.org/10.18632/aging.100098
- Simpson, S.J., Raubenheimer, D., 2012. The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, Princeton.
- Simpson, S.J., Sibly, R.M., Lee, K.P., Behmer, S.T., Raubenheimer, D., 2004. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299-1311. https://doi.org/10.1016/j.anbehav.2004.03.003
- Simpson, S.J., Simpson, C.L., 1990. The mechanisms of nutritional compensation by phytophagous insects, in: Bernays, E.A. (Ed.), Insect-plant Interactions. CRC Press, New York, pp. 112-160.
- Sinclair, D.A., 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987-1002. https://doi.org/10.1016/j.mad.2005.03.019
- Skorupa, D.A., Dervisefendic, A., Zwiener, J., Pletcher, S.D., 2008. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478-490. https://doi.org/10.1111/j.1474-9726.2008.00400.x
- Slansky, F., 1993. Nutritional ecology: the fundamental quest for nutrients, in: Stamp, N.E., Casey, T.M. (Eds.), Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp. 29-91.
- Solon-Biet, S.M., Cogger, V.C., Pulpitel, T., Wahl, D., Clark, X., Bagley, E.E., Gregoriou, G.C., Senior, A.M., Wang, Q.-P., Brandon, A.E., Perks, R., O'Sullivan, J., Koay, Y.C., Bell-Anderson, K., Kebede, M., Yau, B., Atkinson, C., Svineng, G., Dodgson, T., Wali, J.A., Piper, M.D.W., Juricic, P., Partridge, L., Rose, A.J., Raubenheimer, D., Cooney, G.J., Le Couteur, D.G., Simpson, S.J., 2019. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 1, 532-545. https://doi.org/10.1038/s42255-019-0059-2
- Solon-Biet, S.M., McMahon, A.C., Ballard, J.W.O., Ruohonen, K., Wu, L.E., Cogger, V.C., Warren, A., Huang, X., Pichaud, N., Melvin, R.G., Gokarn, R., Khalil, M., Turner, N., Cooney, G.J., Sinclair, D.A., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418-430. https://doi.org/10.1016/j.cmet.2014.02.009
- Solon-Biet, S.M., Mitchell, S.J., Coogan, S.C.P., Cogger, V.C., Gokarn, R., McMahon, A.C., Raubenheimer, D., de Cabo, R., Simpson, S.J., Le Couteur, D.G., 2015. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep. 11, 1529-1534. https://doi.org/10.1016/j.celrep.2015.05.007
- Stearns, S.C., 1989. Trade-offs in life-history evolution. Funct. Ecol. 3, 259-268. https://doi.org/10.2307/2389364
- Stearns, S.C., 1992. The evolution of life histories, Oxford University Press, Oxford.
- Tatar, M., Post, S., Yu, K., 2014. Nutrient control of Drosophila longevity. Trends Endocrinol. Metab. 25, 509-517. https://doi.org/10.1016/j.tem.2014.02.006
- van Huis, A., 2013. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
- van Huis, A., 2020. Insects as food and feed, a new emerging agricultural sector: a review. J. Insects Food Feed 6, 27-44. https://doi.org/10.3920/JIFF2019.0017
- Waldbauer, G.P., Friedman, S., 1991. Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36, 43-63. https://doi.org/10.1146/annurev.en.36.010191.000355
- Wali, J.A., Milner, A.J., Luk, A.W.S., Pulpitel, T.J., Dodgson, T., Facey, H.J.W., Wahl, D., Kebede, M.A., Senior, A.M., Sullivan, M.A., Brandon, A.E., Yau, B., Lockwood, G.P., Koay, Y.C., Ribeiro, R., Solon-Biet, S.M., Bell-Anderson, K.S., O'Sullivan, J.F., Macia, L., Forbes, J.M., Cooney, G.J., Cogger, V.C., Holmes, A., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2021. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat. Metab. 3, 810-828. https://doi.org/10.1038/s42255-021-00393-9
- Warbrick-Smith, J., Behmer, S.T., Lee, K.P., Raubenheimer, D., Simpson, S.J., 2006. Evolving resistance to obesity in an insect. Proc. Natl. Acad. Sci. U.S.A. 103, 14045-14049. https://doi.org/10.1073/pnas.0605225103
- Wheeler, D., 1996. The role of nourishment in oogenesis. Annu. Rev. Entomol. 41, 407-431. https://doi.org/10.1146/annurev.en.41.010196.002203