DOI QR코드

DOI QR Code

Modification of Insect Sodium Currents by a Pyrethroid Permethrin and Positive Cooperativity with Scorpion Toxins

피레스로이드계 살충제 퍼메트린이 Heliothis virescens 중추신경세포에 있는 나트륨채널에 작용하는 기작을 전기생리학적으로 연구

  • Lee, Daewoo (Neuroscience Program, Department of Biological Sciences, Ohio University) ;
  • Adams, Michael E. (Depts. of Entomol. and Cell Biol. & Neurosci., Univ. of California)
  • 이대우 (오하이오 대학교, 생물학과, 신경과학프로그램) ;
  • 마이클 아담스 (캘리포니아 주립대학교, 곤충 및 세포신경생물학과)
  • Received : 2021.12.30
  • Accepted : 2022.02.22
  • Published : 2022.03.01

Abstract

In this study, we have examined pyrethroid actions on sodium channels in the pest insect Heliothis virescens. The synthetic pyrethroid permethrin increased steady-state sodium current in H. virescens central neurons and prolonged tail currents (INa-tail) due to extreme slowing of sodium channel deactivation. Prolongation of INa-tail was evident at permethrin concentrations as low as 60 nM, which modified ~1.7% of sodium channels and 10 μM permethrin modified about 30% of channels. The average time constant (τ1) of tail current decay was ~335 ms for permethrin-modified channels. These modified channels activated at more negative potentials and showed slower activation kinetics, and failed to inactivate. Permethrin modification of sodium channels was dramatically potentiated by the α scorpion toxin LqhαIT, showing positive cooperativity between two binding sites. The amplitude of the tail current induced by 0.3 μM permethrin was enhanced ~8-fold by LqhαIT (200 pM). Positive cooperativity was also observed between permethrin and the insect-specific scorpion toxin AaIT as 10 nM permethrin potentiated the shift of voltage dependence caused by AaIT (~2-fold).

본 연구는 피레스로이드계 살충제인 퍼메트린이 Heliothis virescens의 중추신경세포의 나트륨채널에 어떻게 작용하는 가를 전기생리학적으로 관찰하였다. 퍼메트린은 나트륨채널의 꼬리전류(INa-tail)를 지속적으로 증가시켰으며 이러한 비정상적인 나트륨 전류증가가 나방류의 신경계에 과도한 흥분을 일으겨 살충작용을 하는 것으로 생각된다. 이러한 살충작용은 전갈독과 함께 사용했을때 약 8배의 증가가 있었음을 확인하였다. 전갈독이 살충제의 독성을 강화하는 분자생리학적 기전연구가 계속되면 해충방제에 많은 기여를 할 것으로 생각된다.

Keywords

Acknowledgement

저의 학문적 스승이셨던 고 부경생 교수님의 추모논문집에 이 논문을 발표하게 됨을 개인적으로 매우 의미있게 생각합니다. 논문을 준비하면서 참 스승이셨던 교수님을 다시한번 생각할 수 있는 시간이었음을 감사드립니다. University of California-Riverside박사과정 대학원생으로 이논문실험을 하던 1995년 여름에 교수님과 사모님이 Riverside를 약1주일가량 방문하셨을 때 , 이 실험결과와 곤충생리학 전반에 대해 귀한 조언을 해주시고 지도해 주시던 일들이 생각납니다. 박사과정 후에는 다른 분야를 연구하게 되어 이연구결과를 논문으로 투고하기가 쉽지 않았는데, 25년이 넘어 교수님으로 인해 출판하게 되니 교수님의 생전동안의 제자사랑과 또 고인이 되신 후에도 스승님의 사랑을 알게 하시니 참 감사하기도 하고 또 많이 그립고 아쉽습니다. 다시 한 번 교수님의 명복을 빕니다.

References

  1. Bezanilla, F., Armstrong, C.M., 1977. Inactivation of the sodium channel; I. Sodium current experiments. J. Gen. Physiol. 70, 549-566. https://doi.org/10.1085/jgp.70.5.549
  2. Catterall, W.A., 1992. Cellular and molecular biology of voltagegated sodium channels. Physiol. Rev. 72, S15-S48. https://doi.org/10.1152/physrev.1992.72.suppl_4.S15
  3. Catterall, W.A., 2017. Forty years of sodium channels: structure, function, pharmacology, and epilepsy. Neurochem. Res. 42, 2495-2504. https://doi.org/10.1007/s11064-017-2314-9
  4. Cestele, S., Qu, Y., Rogers, J.C., Rochat, H., Scheuer, T., Catterall, W.A., 1998. Voltage sensor-trapping: enhanced activation of sodium channels by b-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21, 919-931. https://doi.org/10.1016/s0896-6273(00)80606-6
  5. Chinn, K., Narahashi, T., 1986 Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J. Physiol. 380, 191-207. https://doi.org/10.1113/jphysiol.1986.sp016280
  6. Dong, K., Du, Y., Rinkevich, F., Nomura, Y., Xu, P., Wang, L., Silver, K., Zhorov, B.S., 2014. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 50, 1-17. https://doi.org/10.1016/j.ibmb.2014.03.012
  7. Eitan, M., Fowler, E., Herrmann, R., Duval, A., Pelhate, M., Zlotkin, E., 1990. A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry 29, 5941-5947. https://doi.org/10.1021/bi00477a009
  8. Field, L.M., Davies, T.G.E., O'Reilly, A.O., Williamson, M.S., Wallace, B.A., 2017. Voltage-gated sodium channels as targets for pyrethroid insecticides. Eur. Biophys. J. 46, 675-679. https://doi.org/10.1007/s00249-016-1195-1
  9. Gilles, N., Gurevitz, M., Gordon, D., 2003. Allosteric interactions among pyrethroid, brevetoxin, and scorpion toxin receptors on insect sodium channels raise an alternative approach for insect control. FEBS Lett. 540, 81-85. https://doi.org/10.1016/S0014-5793(03)00226-6
  10. Gordon, D., Martin-Eauclaire, M.F., Cestele, S., Kopeyan, C., Carlier, E., Khalifa, R.B., Pelhate, M., Rochat, H., 1996. Scorpion toxins affecting sodium current inactivation bind to distinct homologous receptor sites on rat brain and insect sodium channels. J. Biol. Chem. 271, 8034-8045. https://doi.org/10.1074/jbc.271.14.8034
  11. Gurevitz, M., Gordon, D., Barzilai, M.G., Kahn, R., Cohen, L., Moran, Y., Zilberberg, N., Froy, O., Altman-Gueta, H., Turkov, M., Dong, K., Karbat, I. 2015. Molecular description of scorpion toxin interaction with voltage-gated sodium channels. In: Gopalakrishnakone, P., Possani, L., Schwartz, E., de la Vega, R. (Eds), Scorpion Venoms. Toxinology, vol 4. Springer, Dordrecht, pp. 471-491.
  12. Hille, B., 2001. Ionic channels of excitable membrane. 3rd Ed. Sinauer Associates, Sunderland.
  13. Holloway, S.F., Salgado, V.L., Wu, C.H., Narahashi, T., 1989. Kinetic properties of single sodium channels modified by fenvalerate in mouse neuroblastoma cells. Pflugers Archiv 414, 613-621. https://doi.org/10.1007/BF00582125
  14. Kadala, A., Charreton, M., Charnet, P., Cens, T., Rousset, M., Chahine, M., Vaissiere, B.E., Collet, C., 2019. Voltage-gated sodium channels from the bees Apis mellifera and Bombus terrestris are differentially modulated by pyrethroid insecticides. Sci. Reports 9, 1078. https://doi.org/10.1038/s41598-018-37278-z
  15. Kontis, K.J., Rounaghi, A., Goldin, A.L., 1997. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J. Gen. Physiol. 110, 391-401. https://doi.org/10.1085/jgp.110.4.391
  16. Lee, D., Adams, M.E., 2000. Sodium channels in central neurons of the tobacco budworm, Heliothis virescens: basic properties and modification by scorpion toxins. J. Insect Physiol. 46, 499-508. https://doi.org/10.1016/S0022-1910(99)00136-5
  17. Lee, D., Gurevitz, M., Adams, M.E., 2000. Modification of synaptic transmission and sodium channel inactivation by the insect-selective scorpion toxin LqhαIT. J. Neurophysiol. 83, 1181-1187. https://doi.org/10.1152/jn.2000.83.3.1181
  18. Lee, D., Park, Y., Brown, T.M., Adams, M.E., 1999. Altered properties of neuronal sodium channels associated with genetic resistance to pyrethroids. Mol. Pharm. 55, 584-593.
  19. Li, H-S., Zhao, Z-Q., 1998. Small sensory neurons in the rat dorsal root ganglia express functional NK-1 tachykinin receptor. Eur. J. Neurosci. 10, 1292-1299. https://doi.org/10.1046/j.1460-9568.1998.00140.x
  20. Lund, A.E., Narahashi, T., 1981. Modification of sodium channel kinetics by the insecticide tetrametrhin in crayfish giant axons. Neurotoxicology 2, 213-229.
  21. Marban, E., Yamagishi, T., Tomaselli, G.F., 1998. Structure and function of voltage-gated sodium channels. J. Physiol. 508, 647-657. https://doi.org/10.1111/j.1469-7793.1998.647bp.x
  22. Marcotte, P., Chen, L.Q., Kallen, R.G., Chahine, M. 1997. Effects of Tityus serrulatus scorpion toxin gamma on voltage-gated Na+ channels. Circ. Res. 80, 363-369. https://doi.org/10.1161/01.RES.80.3.363
  23. McCutchen, B.F., Hoover, K., Preisler, H.K., Betana, M.D., Herrmann, R., Robertson., J.L., Hammock, B.D., 1997. Interactions of recombinant and wild-type baculoviruses with classical insecticides and pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Ent. 90, 1170-1180. https://doi.org/10.1093/jee/90.5.1170
  24. Narahashi, T., 1992. Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol. Sci. 13, 236-241. https://doi.org/10.1016/0165-6147(92)90075-H
  25. Narahashi, T., 1996. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 79, 1-14. https://doi.org/10.1111/j.1600-0773.1996.tb00234.x
  26. Narahashi, T., 2000. Neuroreceptors and ion channels as the basis for drug actions: past, present, and future. J. Pharmacol. Exp. Ther. 294, 1-26.
  27. Salgado, V.L., Narahashi, T., 1993. Immobilization of sodium channel gating charge in crayfish giant axons by the insecticide fenvalerate. Mol. Pharm. 43, 626-634.
  28. Soderlund, D.M., Bloomquist, J.R., 1989. Neurotoxic actions of pyrethroid insecticides. Ann. Rev. Entomol. 34, 77-96. https://doi.org/10.1146/annurev.en.34.010189.000453
  29. Song, J.H., Narahashi, T., 1996. Modulation of sodium channels of rat celebellar purkije neurons by the pyrethroid tetramethrin. J. Pharmacol. Exp. Ther. 270, 595-603.
  30. Stevens, M., Peigneur, S., Tytgat, J., 2011. Neurotoxins and their binding areas on voltage-gated sodium channels. Front. Pharmacol. 2, 71. https://doi.org/10.3389/fphar.2011.00071
  31. Tatebayashi, H., Narahashi, T., 1994. Differential mechanism of action of the pyrethroid tetramethrin on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J. Pharmacol. Exp. Ther. 270, 595-603.
  32. Trainer, V.L., Brown, G.B., Catterall, W.A., 1996. Site of covalent labeling by a photoreactive batrachotoxin derivative near transmembrane segment IS6 of the sodium channel alpha subunit. J. Biol. Chem. 271, 11261-11267. https://doi.org/10.1074/jbc.271.19.11261
  33. Trainer, V.L., McPhee, J.C., Boutelet-Bochan, H., Baker, C., Scheuer, T., Babin, D., Demoute, J.P., Guedin, D., Catterall, W.A., 1997. High affinity binding of pyrethroids to the alpha subunit of brain sodium channels. Mol. Pharm. 51, 651-657. https://doi.org/10.1124/mol.51.4.651
  34. Trainer, V.L., Moreau, E., Guedin, D., Baden, D.G., Catterall, W.A., 1993. Neurotoxin binding and allosteric modulation at receptor sites 2 and 5 on purified and reconstituted rat brain sodium channels. J. Biol. Chem. 268, 17114-17119. https://doi.org/10.1016/S0021-9258(19)85309-7
  35. Vais, H., Williamson, M.S., Devonshire, A.L., Usherwood, P.N.R., 2001. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 57, 877-888. https://doi.org/10.1002/ps.392
  36. Yamamoto, D., Quandt, F.N., Narahashi, T., 1983. Modification of single sodium channels by the insecticide tetramethrin. Brain Res. 274, 344-349. https://doi.org/10.1016/0006-8993(83)90716-3
  37. Zilberberg, N., Gordon, D., Pelhate, M., Adams, M.E., Norris, T.M., Zlotkin, E., Gurevitz, M., 1996. Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35, 10215-10222. https://doi.org/10.1021/bi9528309
  38. Zlotkin, E., Eitan, M., Pelhate, M., Chejanovsky, N., 1994. Insect specific neurotoxins from scorpion venom that affect sodium current inactivation. J. Toxicol. Tox. Rev. 13, 25-43. https://doi.org/10.3109/15569549409006479
  39. Zlotkin, E., Fishman, Y., Elazar, M., 2000. AaIT: neurotoxin to insecticide. Biochemie 82, 869-881. https://doi.org/10.1016/S0300-9084(00)01177-9
  40. Zlotkin, E., Miranda, F., Kupeyan, C., Lissitzky, S., 1971. A new toxic protein in the venom of the scorpion Androctonus australis Hector. Toxicon 9, 9-13. https://doi.org/10.1016/0041-0101(71)90038-9