Acknowledgement
이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A3073843).
References
- Bates, S. R., Farrow, I. R., & Trask, R. S. (2016). 3D printed polyurethane honeycombs for repeated tailored energy absorption. Materials & Design, 112, 172-183. doi:10.1016/j.matdes.2016.08.062
- Chun, J. (2017). Development of wearable fashion prototypes using entry-level 3D printers. Journal of the Korean Society of Clothing and Textiles, 41(3), 468-486. doi:10.5850/JKSCT.2017.41.3.468
- Eom, R. I., Lee, H., & Lee, Y. (2019). Evaluation of thermal properties of 3D spacer technical materials in cold environments using 3D printing technology. Polymers, 11(9), 1438. doi:10.3390/polym11091438
- Fei, T., Li, Y., Liu, B., & Xia, C. (2020). Flexible polyurethane/boron nitride composites with enhanced thermal conductivity. High Performance Polymers, 32(3), 324-333. doi:10.1177/0954008319862044
- Han, Y., & Kim, J. (2018). A study on the mechanical properties of knit fabric using 3D printing-Focused on PLA, TPU Filament. Journal of Fashion Business, 22(4), 93-105. doi:10.12940/jfb.2018.22.4.93
- Hong, K. H., & Lee, H. (2020). Development of hip protectors for snowboarding utilizing 3D modeling and 3D printing. Fashion and Textiles, 7(1), 1-19. doi:10.1186/s40691-020-00236-3
- Jang, S. H., Oh, T. H., & Kim, S. H. (2017). Effects of heat treatment temperature on various properties of thermoplastic polyurethane composite fabrics. Textile Science and Engineering, 54(1), 22-27. doi:10.12772/TSE.2017.54.022
- Jeong, Y. S., Choi, H. J., Kim, K. W., Choi, G. S., Kang, J. S., & Yang, K. S. (2009). A study on the thermal conductivity of resilient materials. Thermochimica Acta, 490(1-2), 47-50. doi:10.1016/j.tca.2009.02.015
- Jung, I., & Lee, S. (2021). Effect of surface roughness of fabrics on tensile properties of 3D printing auxetic re-entrant pattern/textile composites. Textile Science and Engineering, 58(4), 167-176. doi:10.12772/TSE.2021.58.167
- Kapur, J., Norwood, J. L., & Cwalina, C. D. (2013, June). Determination of moisture ingress rate through photovoltaic encapsulants. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), USA, pp. 3020-3023
- Kim, S. G., & Kim, H. R. (2018). The recent tendency of fashion textiles by 3D printing. Fashion & Textile Research Journal, 20(2), 117-127. doi:10.5805/SFTI.2018.20.2.117
- Kim, S. J., Chae, C. S., Choe, U. H., Kim, D. H., & Kim, E. J. (2006). Analysis of the properties of domestic and foreign laminated high-performance moisture-permeable and waterproof fabrics. Proceedings of the Korean Society of Dyers and Finishers Conference, Korea, pp. 199-202
- Kweon, S. A., Lee, J. M., & Choi, J. M. (2003). 의복과 인체의 환경적응 [Clothing and the human body's adaptation to the environment]. Seoul: Kyohakyungusa Publisher
- Lee, H., Eom, R. I., & Lee, Y. (2015). 3D modeling of safety leg guards considering skin deformation and shape. Korean Journal of Human Ecology, 24(4), 555-569. doi:10.5934/kjhe.2015.24.4.555
- Lee, H., Eom, R. I., & Lee, Y. (2019). Evaluation of the mechanical properties of porous thermoplastic polyurethane obtained by 3D printing for protective gear. Advances in Materials Science and Engineering, 2019. doi:10.1155/2019/5838361
- Lee, S. (2018). Evaluation of mechanical properties and washability of 3D printed lace/voil composite fabrics manufactured by FDM 3D printing technology. Fashion & Textile Research Journal, 20(3), 353-359. doi:10.5805/SFTI.2018.20.3.353
- Lou, C. W., Lu, C. T., Lin, C. M., Lee, C. H., Chao, C. Y., & Lin, J. H. (2010). Process technology and performance evaluation of functional knee pad. Fibers and Polymers, 11(1), 136-141. doi:10.1007/s12221-010-0136-3
- Mi, H. Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X. F., & Turng, L. S. (2013). Characterization of thermoplastic polyurethane/polylactic acid(TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C, 33(8), 4767-4776. doi:10.1016/j.msec.2013.07.037
- Milosevic, P., & Bogovic, S. (2018). 3D Technologies in individualized chest protector modelling. Textile & Leather Review, 1(2), 46-55. doi:10.31881/TLR.2018.vol1.iss2.p46-55.a6
- Park, J. H., & Lee, J. R. (2019). Developing fall-impact protection pad with 3D mesh curved surface structure using 3D printing technology. Polymers, 11(11), 1800. doi:10.3390/polym11111800
- Park, S., Lee, H., & Lee, Y. (2019). Suggestion of crotch protector prototype for cyclewear based on 3D modeling and printing. Korean Journal of Human Ecology, 28(2), 147-157. doi:10.5850/JKSCT.2020.44.4.739
- Pei, E., Shen, J., & Watling, J. (2015). Direct 3D printing of polymers onto textiles - Experimental studies and applications. Rapid Prototyping Journal. 21(5), 556-571. doi:10.1108/RPJ-09-2014-0126
- Shen, F., Yuan, S., Guo, Y., Zhao, B., Bai, J., Qwamizadeh, M., Chua, C. K., Wei, J., & Zhou, K. (2016). Energy absorption of thermoplastic polyurethane lattice structures via 3D printing - Modeling and prediction. International Journal of Applied Mechanics, 8(7), 1640006. doi:10.1142/S1758825116400068
- Wondu, E., Lule, Z. C., & Kim, J. (2021). Improvement of dielectric properties and thermal conductivity of TPU with aluminaencapsulated rGO. Polymer Testing, 102, 107322. doi:10.1016/j.polymertesting.2021.107322
- Zhou, Z. M., Wang, K., & Wang, Y. H. (2021). High performance of thermoplastic polyurethane-graphene oxide self-healing composite film. Coatings, 11(2), 128. doi:10.3390/coatings1102012