DOI QR코드

DOI QR Code

Analysis of Changes in Temperature and Humidity by Material Combination Using 3D Printing

3D 프린팅을 활용한 재료조합에 따른 온습도 변화 분석

  • Lee, Heeran (Dept. of Material Design Engineering, Kumoh National Institute of Technology) ;
  • Kim, Soyoung (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Lee, Yejin (Dept. of Clothing and Textiles, Chungnam National University) ;
  • Lee, Okkyung (Research Institute of Human Ecology, Chungnam National University)
  • 이희란 (금오공과대학교 소재디자인공학과) ;
  • 김소영 (금오공과대학교 신소재연구소) ;
  • 이예진 (충남대학교 의류학과) ;
  • 이옥경 (충남대학교 생활과학연구소)
  • Received : 2021.10.14
  • Accepted : 2021.12.17
  • Published : 2022.02.28

Abstract

Recently, various clothing items are being developed using 3D printing technology, but comfort has become an issue while wearing them for a long time. Therefore, this study researched on how the temperature and humidity of the devices developed by 3D printing change depending on the material combination. Five types of material combinations (EVA foam, TPU density 10%, TPU density 30%, EVA foam+TPU density 10%, and EVA foam+TPU density 30%) were selected as variables, and the experiment was conducted for two different cases with and without a cover. All the ten types of samples were placed on the hot plate set at 36℃, and the surface temperature and humidity were measured at three different points for 10 minutes. As a result, the case with only TPU showed the greatest temperature change while the case with 100% EVA foam showed the least temperature change. The humidity of the surface layer gradually decreased with time for 100% EVA foam. For the case with TPU materials, the moisture was transferred to the surface layer at first, thereby increasing the humidity but then dropped significantly. Meanwhile, the cases with the cover on showed similar tendencies of change in both temperature and humidity where the overall temperature and humidity delivery were slow.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A3073843).

References

  1. Bates, S. R., Farrow, I. R., & Trask, R. S. (2016). 3D printed polyurethane honeycombs for repeated tailored energy absorption. Materials & Design, 112, 172-183. doi:10.1016/j.matdes.2016.08.062
  2. Chun, J. (2017). Development of wearable fashion prototypes using entry-level 3D printers. Journal of the Korean Society of Clothing and Textiles, 41(3), 468-486. doi:10.5850/JKSCT.2017.41.3.468
  3. Eom, R. I., Lee, H., & Lee, Y. (2019). Evaluation of thermal properties of 3D spacer technical materials in cold environments using 3D printing technology. Polymers, 11(9), 1438. doi:10.3390/polym11091438
  4. Fei, T., Li, Y., Liu, B., & Xia, C. (2020). Flexible polyurethane/boron nitride composites with enhanced thermal conductivity. High Performance Polymers, 32(3), 324-333. doi:10.1177/0954008319862044
  5. Han, Y., & Kim, J. (2018). A study on the mechanical properties of knit fabric using 3D printing-Focused on PLA, TPU Filament. Journal of Fashion Business, 22(4), 93-105. doi:10.12940/jfb.2018.22.4.93
  6. Hong, K. H., & Lee, H. (2020). Development of hip protectors for snowboarding utilizing 3D modeling and 3D printing. Fashion and Textiles, 7(1), 1-19. doi:10.1186/s40691-020-00236-3
  7. Jang, S. H., Oh, T. H., & Kim, S. H. (2017). Effects of heat treatment temperature on various properties of thermoplastic polyurethane composite fabrics. Textile Science and Engineering, 54(1), 22-27. doi:10.12772/TSE.2017.54.022
  8. Jeong, Y. S., Choi, H. J., Kim, K. W., Choi, G. S., Kang, J. S., & Yang, K. S. (2009). A study on the thermal conductivity of resilient materials. Thermochimica Acta, 490(1-2), 47-50. doi:10.1016/j.tca.2009.02.015
  9. Jung, I., & Lee, S. (2021). Effect of surface roughness of fabrics on tensile properties of 3D printing auxetic re-entrant pattern/textile composites. Textile Science and Engineering, 58(4), 167-176. doi:10.12772/TSE.2021.58.167
  10. Kapur, J., Norwood, J. L., & Cwalina, C. D. (2013, June). Determination of moisture ingress rate through photovoltaic encapsulants. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), USA, pp. 3020-3023
  11. Kim, S. G., & Kim, H. R. (2018). The recent tendency of fashion textiles by 3D printing. Fashion & Textile Research Journal, 20(2), 117-127. doi:10.5805/SFTI.2018.20.2.117
  12. Kim, S. J., Chae, C. S., Choe, U. H., Kim, D. H., & Kim, E. J. (2006). Analysis of the properties of domestic and foreign laminated high-performance moisture-permeable and waterproof fabrics. Proceedings of the Korean Society of Dyers and Finishers Conference, Korea, pp. 199-202
  13. Kweon, S. A., Lee, J. M., & Choi, J. M. (2003). 의복과 인체의 환경적응 [Clothing and the human body's adaptation to the environment]. Seoul: Kyohakyungusa Publisher
  14. Lee, H., Eom, R. I., & Lee, Y. (2015). 3D modeling of safety leg guards considering skin deformation and shape. Korean Journal of Human Ecology, 24(4), 555-569. doi:10.5934/kjhe.2015.24.4.555
  15. Lee, H., Eom, R. I., & Lee, Y. (2019). Evaluation of the mechanical properties of porous thermoplastic polyurethane obtained by 3D printing for protective gear. Advances in Materials Science and Engineering, 2019. doi:10.1155/2019/5838361
  16. Lee, S. (2018). Evaluation of mechanical properties and washability of 3D printed lace/voil composite fabrics manufactured by FDM 3D printing technology. Fashion & Textile Research Journal, 20(3), 353-359. doi:10.5805/SFTI.2018.20.3.353
  17. Lou, C. W., Lu, C. T., Lin, C. M., Lee, C. H., Chao, C. Y., & Lin, J. H. (2010). Process technology and performance evaluation of functional knee pad. Fibers and Polymers, 11(1), 136-141. doi:10.1007/s12221-010-0136-3
  18. Mi, H. Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X. F., & Turng, L. S. (2013). Characterization of thermoplastic polyurethane/polylactic acid(TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C, 33(8), 4767-4776. doi:10.1016/j.msec.2013.07.037
  19. Milosevic, P., & Bogovic, S. (2018). 3D Technologies in individualized chest protector modelling. Textile & Leather Review, 1(2), 46-55. doi:10.31881/TLR.2018.vol1.iss2.p46-55.a6
  20. Park, J. H., & Lee, J. R. (2019). Developing fall-impact protection pad with 3D mesh curved surface structure using 3D printing technology. Polymers, 11(11), 1800. doi:10.3390/polym11111800
  21. Park, S., Lee, H., & Lee, Y. (2019). Suggestion of crotch protector prototype for cyclewear based on 3D modeling and printing. Korean Journal of Human Ecology, 28(2), 147-157. doi:10.5850/JKSCT.2020.44.4.739
  22. Pei, E., Shen, J., & Watling, J. (2015). Direct 3D printing of polymers onto textiles - Experimental studies and applications. Rapid Prototyping Journal. 21(5), 556-571. doi:10.1108/RPJ-09-2014-0126
  23. Shen, F., Yuan, S., Guo, Y., Zhao, B., Bai, J., Qwamizadeh, M., Chua, C. K., Wei, J., & Zhou, K. (2016). Energy absorption of thermoplastic polyurethane lattice structures via 3D printing - Modeling and prediction. International Journal of Applied Mechanics, 8(7), 1640006. doi:10.1142/S1758825116400068
  24. Wondu, E., Lule, Z. C., & Kim, J. (2021). Improvement of dielectric properties and thermal conductivity of TPU with aluminaencapsulated rGO. Polymer Testing, 102, 107322. doi:10.1016/j.polymertesting.2021.107322
  25. Zhou, Z. M., Wang, K., & Wang, Y. H. (2021). High performance of thermoplastic polyurethane-graphene oxide self-healing composite film. Coatings, 11(2), 128. doi:10.3390/coatings1102012