DOI QR코드

DOI QR Code

유연한 열전소재를 이용한 에너지 하베스터 연구개발 동향

Recent Progress in Energy Harvesters Based on Flexible Thermoelectric Materials

  • 박종민 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 김서하 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 나유진 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Park, Jong Min (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Kim, Seoha (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Na, Yujin (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Park, Kwi-Il (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU))
  • 투고 : 2022.01.12
  • 심사 : 2022.01.14
  • 발행 : 2022.03.01

초록

Recent advancement of Internet of Things (IoT) and energy harvesting technology enable realization of flexible thermoelectric energy harvester (f-TEH), with technological prowess for use in biomedical monitoring system integrated applications. To expand a flexible thermoelectric energy harvesting platform, the f-TEH must be required for optimized flexible thermoelectric materials and device structure. In response to these demands related to thermoelectric energy harvesting, many research groups have investigated various f-TEHs applied as a power source for wearable electronics. As a key member of the f-TEH, film-based f-TEHs possess significant applicability in research to realize self-powered wearable electronics, owing to their excellent flexibility, low thermal conductivity, and convenient fabrication process. Thus, based on the rapid growth of thermoelectric film technology, this review aims to overview comprehensively the f-TEH made of various inorganic/organic thermoelectric materials including developed fabrication methods, high thermoelectric performance, and wide-range applications.

키워드

과제정보

본 연구는 2022년도 정부(교육부, 과학기술정보통신부)의 재원으로 한국연구재단의 지원(No.2019R1I1A2A01057073, No.2021R1A4A2001658)을 받아 수행되었습니다.

참고문헌

  1. X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Adv. Mater., 26, 1336 (2014). [DOI: https://doi.org/10.1002/adma.201304248]
  2. A. Nozariasbmarz, H. Collins, K. Dsouza, M. H. Polash, M. Hosseini, M. Hyland, J. Liu, A. Malhotra, F. M. Ortiz, F. Mohaddes, V. P. Ramesh, Y. Sargolzaeiaval, N. Snouwaert, M. C. Ozturk, and D. Vashaee, Appl. Energy, 258, 114069 (2020). [DOI: https://doi.org/10.1016/j.apenergy.2019.114069]
  3. W. Y. Chen, X. L. Shi, J. Zou, and Z. G. Chen, Nano Energy, 81, 105684 (2021). [DOI: https://doi.org/10.1016/j.nanoen.2020.105684]
  4. S. Kim, D. Y. Hyeon, S. S. Ham, J. Youn, H. S. Lee, S. Yi, K. T. Kim, and K. I. Park, Appl. Surf. Sci., 558, 149784 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2021.149784]
  5. D. W. Lee, D. G. Jeong, J. H. Kim, H. S. Kim, G. Murillo, G. H. Lee, H. C. Song, and J. H. Jung, Nano Energy, 76, 105066 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.105066]
  6. L. Huang, S. Lin, Z. Xu, H. Zhou, J. Duan, B. Hu, and J. Zhou, Adv. Mater., 32, 1902034 (2020). [DOI: https://doi.org/10.1002/adma.201902034]
  7. D. L. Wen, H. T. Deng, X. Liu, G. K. Li, X. R. Zhang, and X. S. Zhang, Microsyst. Nanoeng., 6, 68 (2020). [DOI: https://doi.org/10.1038/s41378-020-0179-6]
  8. V. Karthikeyan, J. U. Surjadi, J.C.K. Wong, V. Kannan, K. H. Lam, X. Chen, Y. Lu, and V.A.L. Roy, J. Power Sources, 455, 227983 (2020). [DOI: https://doi.org/10.1016/j.jpowsour.2020.227983]
  9. D. Y. Hyeon, C. Nam, S. S. Ham, G. T. Hwang, S. Yi, K. T. Kim, and K. I. Park, Adv. Electron. Mater., 7, 2000969 (2021). [DOI: https://doi.org/10.1002/aelm.202000969]
  10. S. K. Kihoi and H. S. Lee, Sustain. Energ. Fuels, 4, 5645 (2020). [DOI: https://doi.org/10.1039/d0se01081b]
  11. J. He and T. M. Tritt, Science, 357, 1369 (2017). [DOI: https://doi.org/10.1126/science.aak9997]
  12. H. Shang, T. Li, D. Luo, L. Yu, Q. Zou, D. Huang, L. Xiao, H. Gu, Z. Ren, and F. Ding, ACS Appl. Mater. Interfaces, 12, 7358 (2020). [DOI: https://doi.org/10.1021/acsami.9b21771]
  13. M. Hong, Z. G. Chen, and J. Zou, Chinese Phys. B, 27, 048403 (2018). [DOI: https://doi.org/10.1088/1674-1056/27/4/048403]
  14. Y. Wang, W. D. Liu, X. L. Shi, M. Hong, L. J. Wang, M. Li, H. Wang, J. Zou, and Z. G. Chen, Chem. Eng. J., 391, 123513 (2020). [DOI: https://doi.org/10.1016/j.cej.2019.123513]
  15. Y. Xiao and L. D. Zhao, npj Quantum Mater., 3, 55 (2018). [DOI: https://doi.org/10.1038/s41535-018-0127-y]
  16. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature, 508, 373 (2014). [DOI: https://doi.org/10.1038/nature13184]
  17. Z. G. Chen, X. Shi, L. D. Zhao, and J. Zou, Prog. Mater. Sci., 97, 283 (2018). [DOI: https://doi.org/10.1016/j.pmatsci.2018.04.005]
  18. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature, 473, 66 (2011). [DOI: https://doi.org/10.1038/nature09996]
  19. S. J. Kim, J. H. We, and B. J. Cho, Energy Environ. Sci., 7, 1959 (2014). [DOI: https://doi.org/10.1039/c4ee00242c]
  20. K. Yusupov, S. Stumpf, S. You, A. Bogach, P. M. Martinez, A. Zakhidov, U. S. Schubert, V. Khovaylo, and A. Vomiero, Adv. Funct. Mater., 28, 1801246 (2018). [DOI: https://doi.org/10.1002/adfm.201801246]
  21. S. Y. Hong, J. H. Oh, H. Park, J. Y. Yun, S. W. Jin, L. Sun, G. Zi, and J. S. Ha, NPG Asia Mater., 9, e448 (2017). [DOI: https://doi.org/10.1038/am.2017.194]
  22. L. Liang, G. Chen, and C. Y. Guo, Mater. Chem. Front., 1, 380 (2017). [DOI: https://doi.org/10.1039/c6qm00061d]
  23. B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Nat. Rev. Mater., 1, 16050 (2016). [DOI: https://doi.org/10.1038/natrevmats.2016.50]
  24. S. K. Kihoi, H. Kim, H. Jeong, H. Kim, J. Ryu, S. Yi, and H. S. Lee, J. Alloys Compd., 806, 361 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.07.220]
  25. H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck, T. H. Kim, J. Y. Song, J. Park, K. H. Jeong, and M. H. Cho, Nano Energy, 47, 374 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.03.009]
  26. B. Lee, H. Cho, K. T. Park, J. S. Kim, M. Park, H. Kim, Y. Hong, and S. Chung, Nat. Commun., 11, 5948 (2020). [DOI: https://doi.org/10.1038/s41467-020-19756-z]
  27. C. S. Kim, H. M. Yang, J. Lee, G. S. Lee, H. Choi, Y. J. Kim, S. H. Lim, S. H. Cho, and B. J. Cho, ACS Energy Lett., 3, 501 (2018). [DOI: https://doi.org/10.1021/acsenergylett.7b01237]
  28. K. A. Morgan, T. Tang, I. Zeimpekis, A. Ravagli, C. Craig, J. Yao, Z. Feng, D. Yarmolich, C. Barker, H. Assender, and D. W. Hewak, Sci. Rep., 9, 4393 (2019). [DOI: https://doi.org/10.1038/s41598-019-41000-y]
  29. T. Koskinen, V. Khayrudinov, F. Emadi, H. Jiang, T. Haggren, H. Lipsanen, and I. Tittonen, ACS Appl. Energ. Mater., 4, 14727 (2021). [DOI: https://doi.org/10.1021/acsaem.1c03405]
  30. T. Sun, B. Zhou, Q. Zheng, L. Wang, W. Jiang, and G. J. Snyder, Nat. Commun., 11, 572 (2020). [DOI: https://doi.org/10.1038/s41467-020-14399-6]
  31. C. K. Mytafides, L. Tzounis, G. Karalis, P. Formanek, and A. S. Paipetis, ACS Appl. Mater. Interfaces, 13, 11151 (2021). [DOI: https://doi.org/10.1021/acsami.1c00414]
  32. N. Kim, S. Lienemann, I. Petsagkourakis, D. Alemu Mengistie, S. Kee, T. Ederth, V. Gueskine, P. Leclere, R. Lazzaroni, X. Crispin, and K. Tybrandt, Nat. Commun., 11, 1424 (2020). [DOI: https://doi.org/10.1038/s41467-020-15135-w]
  33. T. Ding, K. H. Chan, Y. Zhou, X. Q. Wang, Y. Cheng, T. Li, and G. W. Ho, Nat. Commun., 11, 6006 (2020). [DOI: https://doi.org/10.1038/s41467-020-19867-7]
  34. K. K. Jung, Y. Jung, C. J. Choi, J. M. Lee, and J. S. Ko, Curr. Appl. Phys., 16, 1442 (2016). [DOI: https://doi.org/10.1016/j.cap.2016.08.010]
  35. A. Kumar, R. Kumar, and D. K. Satapathy, Physica B, 593, 412275 (2020). [DOI: https://doi.org/10.1016/j.physb.2020.412275]
  36. X. Zhao, W. Han, C. Zhao, S. Wang, F. Kong, X. Ji, Z. Li, and X. Shen, ACS Appl. Mater. Interfaces, 11, 10301 (2019). [DOI: https://doi.org/10.1021/acsami.8b21716]
  37. D. Abol-Fotouh, B. Dorling, O. Zapata-Arteaga, X. Rodriguez-Martinez, A. Gomez, J. S. Reparaz, A. Laromaine, A. Roig, and M. Campoy-Quiles, Energy Environ. Sci., 12, 716 (2019). [DOI: https://doi.org/10.1039/c8ee03112f]
  38. M. H. Lee, Y. H. Kang, J. Kim, Y. K. Lee, and S. Y. Cho, Adv. Energy Mater., 9, 1900914 (2019). [DOI: https://doi.org/10.1002/aenm.201900914]
  39. J. Kim, E. J. Bae, Y. H. Kang, C. Lee, and S. Y. Cho, Nano Energy, 74, 104824 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104824]
  40. D. Tan, J. Zhao, C. Gao, H. Wang, G. Chen, and D. Shi, ACS Appl. Mater. Interfaces, 9, 21820 (2017). [DOI: https://doi.org/10.1021/acsami.7b04938]
  41. Y. Guo, C. Dun, J. Xu, P. Li, W. Huang, J. Mu, C. Hou, C. A. Hewitt, Q. Zhang, Y. Li, D. L. Carroll, and H. Wang, ACS Appl. Mater. Interfaces, 10, 33316 (2018). [DOI: https://doi.org/10.1021/acsami.8b10720]
  42. Y. Lu, X. Li, K. Cai, M. Gao, W. Zhao, J. He, and P. Wei, ACS Appl. Mater. Interfaces, 13, 631 (2021). [DOI: https://doi.org/10.1021/acsami.0c18577]