DOI QR코드

DOI QR Code

2차원 탄소 나노 구조를 가진 그래핀 소재의 바이오 센서 및 태양전지 응용에 관한 연구 동향

A Brief Review of the Application on Solar Cells and Biosensors Using Graphene Materials of 2-Dimensional Carbon Structure

  • 박형기 (아주대학교의료원 의과대학) ;
  • 김승일 (아주대학교 신소재공학과) ;
  • 문지윤 (아주대학교 신소재공학과) ;
  • 최준희 (아주대학교 신소재공학과) ;
  • 현상화 (아주대학교 신소재공학과) ;
  • 이재현 (아주대학교 신소재공학과)
  • Park, Hyeong Gi (School of Medicine, Ajou University Medical Center, Ajou University) ;
  • Kim, Seung-Il (Department of Materials Science and Engineering, Ajou University) ;
  • Moon, Ji-Yun (Department of Materials Science and Engineering, Ajou University) ;
  • Choi, Jun-Hui (Department of Materials Science and Engineering, Ajou University) ;
  • Hyun, Sang-Hwa (Department of Materials Science and Engineering, Ajou University) ;
  • Lee, Jae-Hyun (Department of Materials Science and Engineering, Ajou University)
  • 투고 : 2021.11.04
  • 심사 : 2021.11.15
  • 발행 : 2022.03.01

초록

This paper describes why we must use graphene materials for solar cells and biosensors. It has been superior in several properties such as super-thin film, higher tensile strength, high current density, high thermal conductivity, and high mobility. Therefore, graphene is one of the emerging advanced materials because of its applicability in various electronic device applications. We investigated the requirements of graphene materials for the application of solar cells and biosensors. In addition, we discussed the research trends such as transducers in biosensors and transparent electrodes in solar cells. The research on graphene materials and their application will be beneficial and helpful for the near future.

키워드

과제정보

이 논문은 2021년도 정부(과기정통부)의 재원으로 한국연구재단 혁신성장 선도 고급연구인재 육성사업의 지원을 받아 수행된 연구임(No.2021M3H1A1048922).

참고문헌

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). [DOI: https://doi.org/10.1126/science.1102896]
  2. N. Kumar, R. Salehiyan, V. Chauke, O. J. Botlhoko, K. Setshedi, M. Scriba, M. Masukume, and S. S. Ray, FlatChem, 27, 100224 (2021). [DOI: https://doi.org/10.1016/j.flatc.2021.100224]
  3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001). [DOI: https://doi.org/10.1126/science.1065389]
  4. W. Y. Kim and K. S. Kim, Nat. Nanotechnol., 3, 408 (2008). [DOI: https://doi.org/10.1038/nnano.2008.163]
  5. W. Yang. G. Chen, Z. Shi, C. C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang, Nature Mater., 12, 792 (2013). [DOI: https://doi.org/10.1038/nmat3695]
  6. D. Wei and X. Xu, Appl. Phys. Lett., 100, 023110 (2012). [DOI: https://doi.org/10.1063/1.3675636]
  7. C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, Acc. Chem. Res., 46, 2211 (2013). [DOI: https://doi.org/10.1021/ar300159f]
  8. S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, Nano Lett., 7, 3394 (2007). [DOI: https://doi.org/10.1021/nl0717715]
  9. H.M.A. Hassan, V. Abdelsayed, A. EI R. S. Khder, K. M. AbouZeid, J. Terner, M. S. EI-Shall, S. I. Al-Resayes, and A. A. El-Azhary, J. Mater. Chem., 19, 3832 (2009). [DOI: https://doi.org/10.1039/B906253J]
  10. H. Park, D. Kim, E. C. Cho, S. Q. Hussain, J. Park, D. Lim, S. Kim, S. Dutta, M. Kumar, Y. Kim, and J. Yi, Curr. Appl. Phys., 20, 219 (2020). [DOI: https://doi.org/10.1016/j.cap.2019.09.009]
  11. A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, and E. T. Sayed, Renew. Sust. Energ. Rev., 135, 110026 (2021). [DOI: https://doi.org/10.1016/j.rser.2020.110026]
  12. I. Novodchuk, M. Bajcsy, and M. Yavuz, Carbon, 172, 431 (2021). [DOI: https://doi.org/10.1016/j.carbon.2020.10.048]
  13. H. Park, Y. J. Lee, J. Park, Y. Kim, J. Yi, Y. Lee, S. Kim, C. K. Park, and K. J. Lim, Trans. Electr. Electron. Mater., 19, 165 (2018). [DOI: https://doi.org/10.1007/s42341-018-0026-8]
  14. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kimm, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol., 5, 574 (2010). [DOI: https://doi.org/10.1038/nnano.2010.132]
  15. E. Zion, A. Butenko, A. Sharoni, M. Kaveh, and I. Shlimak, Phys. Rev. B, 96, 245143 (2017). [DOI: https://doi.org/10.1103/PhysRevB.96.245143]
  16. G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, Nanotechnology, 23, 112001 (2012). [DOI: http://stacks.iop.org/Nano/23/112001] https://doi.org/10.1088/0957-4484/23/11/112001
  17. M. M. Tavakoli, R. Tavakoli, P. Yadav, and J. Kong, J. Mater. Chem. A, 7, 679 (2019). [DOI: https://doi.org/10.1039/C8TA10857A]
  18. F. Pan, C. Sun, Y. Li, D. Tang, Y. Zou, X. Li, S. Bai, X. Wei, M. Lv, X. Chen, and Y. Li, Energy Environ. Sci., 12, 3400 (2019). [DOI: https://doi.org/10.1039/C9EE02433F]
  19. A. Kumar, A. K Goyal, and N. Gupta, ECS J. Solid State Sci. Technol., 9, 115022 (2020). [DOI: https://doi.org/10.1149/2162-8777/abb2b]
  20. G. Seo, G. Lee, M. J. Kim, S. H. Baek, M. Choi, K B. Ku, C. S Lee, S. Jun, D. Park, H. G. Kim, S. J. Kim, J. O Lee, B. T. Kim, E. C. Park, and S. I. Kim, ACS Nano, 14, 5135 (2020). [DOI: https://doi.org/10.1021/acsnano.0c02823]
  21. X. Zhang, Q. Qi, Q. Jing, S. Ao, Z. Zhang, M. Ding, M. Wu, K Liu, W. Wang, Y. Ling, Z. Zhang, and W. Fu, ArXiv:2003.12529 [Physics.app-ph] (2020). [DOI: http://arxiv.org/abs/2003.12529]