DOI QR코드

DOI QR Code

시멘트 및 혼화재의 품질관리를 위한 밀도 시험방법 비교 연구

A Study on Comparison of Density Test Methods for Quality Control of Cement and Mineral Admixture

  • 이재승 (한국건설생활환경시험연구원 스마트건설재료센터) ;
  • 노상균 (한국건설생활환경시험연구원 스마트건설재료센터) ;
  • 박철 (쌍용 C&E 기술연구소) ;
  • 신홍철 (한국건설생활환경시험연구원 스마트건설재료센터)
  • Jae-Seung, Lee (Smart Construction Materials Center, Korea Conformity Laboratories) ;
  • Sang-Kyun, Noh (Smart Construction Materials Center, Korea Conformity Laboratories) ;
  • Cheol, Park (Technology Research Center, Ssangyong C&E) ;
  • Hong-Chul, Shin (Smart Construction Materials Center, Korea Conformity Laboratories)
  • 투고 : 2022.11.07
  • 심사 : 2022.12.01
  • 발행 : 2022.12.30

초록

본 연구에서는 시멘트, 고로슬래그 미분말 및 플라이 애시의 효율적인 밀도 관리를 위해 KS L 5110과 가스 피크노미터 및 전자 밀도계에 의한 밀도 값을 비교하였다. 시험방법에 따른 상관관계 및 사용성을 검토하였으며, 이를 바탕으로 대체 시험방법에 대한 활용 가능성을 분석하였다. 시험방법에 따른 밀도 시험결과 시멘트, 고로 슬래그 미분말 및 플라이 애시 모두 가스 피크노미터, KS L 5110 및 전자 밀도계 순으로 밀도 값이 낮아지는 경향을 나타냈으며, 이는 시험방법에 따라 시료의 부피를 평가하는 범위의 차이에 따른 것으로 분석된다. 시험방법에 따른 상관관계는 결정계수 R2 값이 0.71~0.93 범위로 비교적 양호한 상관성을 나타냈으며, 상관식을 통해 오차에 대한 보정을 적용하면 대체 시험방법의 활용이 가능할 것으로 분석된다. 시험 절차, 측정시간 및 변동계수를 고려한 사용성 검토 결과 가스 피크노미터는 시험 절차가 가장 간단하며, 신뢰성도 양호하였다. 또한, 숙련도가 크게 필요하지 않기 때문에 시험자 간의 재현성도 상대적으로 높을 것으로 예상된다.

In this study, the density of KS L 5110 was compared with that of gas pycnometer and electronic densimeter for efficient density management of cement, blast furnace slag powder and fly ash. Correlation and usability according to the test method were reviewed, and based on the results of the experiment, the availability of alternative test methods was analyzed. As a result of the density test according to test methods, the density of cement, blast furnace slag powder and fly ash tended to decrease in the order of gas pycnometer, KS L 5110 and electronic densimeter. Because the volume range of the sample to be evaluated is different depending on test methods. The coefficient of determination R2 was in the range of 0.71 to 0.93, and the correlation according to test methods showed a relatively good correlation. If correction is applied through correlation, it is analyzed that alternative test methods can be used. As a result of the usability review considering the test procedure, measurement time and coefficient of variation, the gas pycnometer had the simplest test procedure and good reliability. In addition, it is expected that the reproducibility between the testers is relatively high because the skill is not greatly required.

키워드

과제정보

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 소재부품기술개발사업의 연구비 지원에 의한 연구임(20010607)

참고문헌

  1. ASTM C 188-17 (2017). Standard test method for density of hydraulic cement, ASTM International, 7th Ed., United States of America.
  2. BS EN 196-6 (2018). Methods of testing cement, determination of fineness, British Standard Institution, 3th Ed., United Kingdom.
  3. Caizan-Juanarena, L., Sleutels, T., Borsje, C., ter Heijne, A. (2020). Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems, Renewable Energy, 157, 782-792. https://doi.org/10.1016/j.renene.2020.05.049
  4. Chang, C.S. (1988). Measuring density and porosity of grain kernels using a gas pycnometer, Cereal Chemistry, 65(1), 13-15.
  5. Helsel, M.A., Ferraris, C.F., Bentz, D. (2016). Comparative study of methods to measure the density of cementious powders, Journal of Testing and Evaluation, 44(6).
  6. Kim, S.S., Ryou, J.S., Lee, S.T., Jung, H.S. (2009). Construction Materials Engineering. Goomibook, Korea, 26-34.
  7. KS D 0033 (2001). Method for determination of density of metal powder sintered materials, Korean Agency for Technology and Standards, 3th Ed., Korea.
  8. KS L ISO 18754 (2013). Fine ceramics(advanced ceramics, advanced technical ceramics) - Determination of density and apparent porosity, 4th Ed., Korea.
  9. KS L 5110 (2021). Test method of density of hydraulic cement, Korean Agency for Technology and Standards, 4th Ed., Korea.
  10. KS M ISO 21687 (2007). Carbonaceous materials used in the production of aluminium - Determination of density by gas pyknometry(volumetric) using helium as the analysis gas - Solid materials, Korean Agency for Technology and Standards, 2nd Ed., Korea.
  11. Lee, J.E., Lee, J.K. (1998). Physical, morphological, and chemical analysis of fly ash generated from the coal fired power plant, Journal of Energy Engineering, 7(1), 146-156 [in Korean].
  12. Lim, K.W. (2014). Volume variation of liquid fuel by seasonal, regional temperature changes, Transactions of the Korean Society of Mechanical Engineers B, 38(2), 155-163 [in Korean]. https://doi.org/10.3795/KSME-B.2014.38.2.155
  13. Mo, E.K., Lee, S.J., Son, J.W., Kim, D.G., Park, M.J., Lee, M.G., Hyun, I.G., Jung, K.S., Nam, E.S. (2000). Four cases of kerosene pneumonitis, The Korean Journal of Medicine, 59(2), 235-240.
  14. de Terris, T., Andreau, O., Peyre, P., Adamski, F., Koutiri, I., Gorny, C., Dupuy, C. (2019). Optimization and comparison of porosity rate measurement methods of selective laser melted metallic parts, Additive Manufacturing, 28, 802-813. https://doi.org/10.1016/j.addma.2019.05.035
  15. Webb, P.A. (2001). Volume and density determinations for particle technologists, Micromeritics Instrument Corporation.