참고문헌
-
Y. Altin, R. Colak and B. Torgut,
${\mathcal{I}}_2(u)$ -convergence of double sequences of order (α, β), Georgian Mathematical Journal 22 (2015), 153-158. - G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421-432. https://doi.org/10.1017/S0004972700009370
- G. Beer, Wijsman convergence: A survey, Set-Valued Anal. 2 (1994), 77-94. https://doi.org/10.1007/BF01027094
- S. Bhunia, P. Das and S.K. Pal, Restricting statistical convergence, Acta Mathematica Hungarica 134 (2012), 153-161. https://doi.org/10.1007/s10474-011-0122-2
- R. Colak, Statistical convergence of order α, Mordern Methods in Analysis and Its Applications, Anamaya Publishers, New Delhi, 2010.
- R. Colak and Y. Altin, Statistical convergence of double sequences of order α, Journal of Function Spaces and Applications 2013 (2013), 5 pages.
-
P. Das, P. Kostyrko, W. Wilczynski and P. Malik,
$\mathcal{I}$ and$\mathcal{I}$ *-convergence of double sequences, Math. Slovaca 58 (2008), 605-620. https://doi.org/10.2478/s12175-008-0096-x -
P. Das and E. Savas, On
$mathcal{I}$ -statistical and$mathcal{I}$ -lacunary statistical convergence of order α, Bull. Iranian Math. Soc. 40 (2014), 459-472. -
E. Dundar, U. Ulusu and B. Aydin,
$mathcal{I}_2$ -lacunary statistical convergence of double sequences of sets, Konuralp Journal of Mathematics 5 (2017), 1-10. - A. Esi, On asymptotically double lacunary statistically equivalent sequences, Applied Mathematics Letters 22 (2009), 1781-1785. https://doi.org/10.1016/j.aml.2009.06.018
- A. Esi and M. Acikgoz, On λ2-asymptotically double statistical equivalent sequences, Int. J. Nonlinear Anal. Appl. 5 (2014), 16-21.
- M. Et and H. Sengul, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28 (2014), 1593-1602. https://doi.org/10.2298/FIL1408593E
- A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics 32 (2001), 129-138. https://doi.org/10.1216/rmjm/1030539612
- E. Gulle, Double Wijsman asymptotically statistical equivalence of order α, Journal of Intelligent and Fuzzy Systems 38 (2020), 2081-2087. https://doi.org/10.3233/jifs-190796
- B. Hazarika and V. Kumar, On asymptotically double lacunary statistical equivalent sequences in ideal context, Journal of Inequalities and Applications 2013 (2013), 15 pages.
-
O. Kisi and F. Nuray, On Sλ(
$\mathcal{I}$ )-asymptotically statistical equivalence of sequence of sets, ISRN Mathematical Analysis 2013 (2013), 6 pages. -
P. Kostyrko, T. Salat and W. Wilczynski,
$mathcal{I}$ -convergence, Real Anal. Exchange 26 (2000), 669-686. https://doi.org/10.2307/44154069 - M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
- M. Mursaleen, S.A. Mohiuddine and O.H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010), 603-611. https://doi.org/10.1016/j.camwa.2009.11.002
- M. Mursaleen and S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports 12 (2010), 359-371.
-
M. Mursaleen and A. Alotaibi, On
$mathcal{I}$ -convergence in random 2-normed spaces, Math. Slovaca 61 (2011), 933-940. https://doi.org/10.2478/s12175-011-0059-5 - M. Mursaleen and S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), 49-62. https://doi.org/10.2478/s12175-011-0071-9
-
M. Mursaleen, S. Debnath and D. Rakshit,
$mathcal{I}$ -statistical limit superior and$mathcal{I}$ -statistical limit inferior, Filomat 31 (2017), 2103-2108. https://doi.org/10.2298/FIL1707103M -
F. Nuray, E. Dundar and U. Ulusu, Wijsman
$mathcal{I}_2$ -convergence of double sequences of closed sets, Pure and Applied Mathematics Letters 2 (2014), 35-39. - F. Nuray, U. Ulusu and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Computing 20 (2016), 2883-2888. https://doi.org/10.1007/s00500-015-1691-8
- F. Nuray, R.F. Patterson and E. Dundar, Asymptotically lacunary statistical equivalence of double sequences of sets, Demonstratio Mathematica 49 (2016), 183-196. https://doi.org/10.1515/dema-2016-0016
- F. Nuray, E. Dundar and U. Ulusu, Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform. 16 (2021), 55-64.
- R.F. Patterson, Rates of convergence for double sequences, Southeast Asian Bull. Math. 26 (2002), 469-478. https://doi.org/10.1007/s10012-002-0469-y
- R.F. Patterson and E. Savas, Lacunary statistical convergence of double sequences, Math. Commun. 10 (2005), 55-61.
- R.F. Patterson and E. Savas, On asymptotically lacunary statistical equivalent sequences, Thai J. Math. 4 (2006), 267-272.
- A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321. https://doi.org/10.1007/BF01448977
-
E. Savas, On
$mathcal{I}$ -asymptotically lacunary statistical equivalent sequences, Advances in Difference Equations 2013 (2013), 1-7. https://doi.org/10.1186/1687-1847-2013-1 - E. Savas, Double almost lacunary statistical convergence of order α, Advances in Difference Equations 2013 (2013), 1-10. https://doi.org/10.1186/1687-1847-2013-1
-
E. Savas, On
$mathcal{I}$ -lacunary statistical convergence of order α for sequences of sets, Filomat 29 (2015), 1223-1229. https://doi.org/10.2298/FIL1506223S -
E. Savas, Asymptotically
$mathcal{I}$ -lacunary statistical equivalent of order α for sequences of sets, Journal of Nonlinear Sciences and Applications 10 (2017), 2860-2867. https://doi.org/10.22436/jnsa.010.06.01 -
H. Sengul and M. Et, On
$mathcal{I}$ -lacunary statistical convergence of order α of sequences of sets, Filomat 31 (2017), 2403-2412. https://doi.org/10.2298/FIL1708403S - U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Progress in Applied Mathematics 4 (2012), 99-109.
- U. Ulusu and F. Nuray, On asymptotically lacunary statistical equivalent set sequences, Journal of Mathematics 2013 (2013), 5 pages.
-
U. Ulusu and E. Dundar,
$mathcal{I}$ -lacunary statistical convergence of sequences of sets, Filomat 28 (2014), 1567-1574. https://doi.org/10.2298/FIL1408567U -
U. Ulusu and E. Dundar, Asymptotically
$mathcal{I}_2$ -lacunary statistical equivalence of double sequences of sets, Journal of Inequalities and Special Functions 7 (2016), 44-56. -
U. Ulusu, E. Dundar and B. Aydin, Asymptotically
$mathcal{I}_2$ -Cesaro equivalence of double sequences of sets, Journal of Inequalities and Special Functions 7 (2016), 225-234. -
U. Ulusu, E. Dundar and E. Gulle,
$mathcal{I}_2$ -Cesaro summability of double sequences of sets, Palestine Journal of Mathematics 9 (2020), 561-568. - U. Ulusu and E. Gulle, Some statistical convergence types for double set sequences of order α, Facta Univ. Ser. Math. Inform. 35 (2020), 595-603.
-
U. Ulusu and E. Gulle, Wijsman asymptotically
$mathcal{I}_2$ -statistical equivalence of order α, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69 (2020), 854-862. https://doi.org/10.31801/cfsuasmas.695309 - R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188. https://doi.org/10.1090/S0002-9904-1964-11072-7