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WIJSMAN ASYMPTOTICAL I2-LACUNARY STATISTICAL
EQUIVALENCE OF ORDER η FOR DOUBLE SET

SEQUENCES

ESRA GÜLLE, UĞUR ULUSU∗

Abstract. In this paper, for double set sequences, as a new approach
to the notion of Wijsman asymptotical lacunary statistical equivalence of
order η, we introduce new concepts which are called Wijsman asymptotical
I2-lacunary statistical equivalence of order η and Wijsman asymptotical
strong I2-lacunary equivalence of order η where 0 < η ≤ 1. Also, some
properties of these new concepts are investigated, and the existence of
some relations between these and some previously studied asymptotical
equivalence concepts for double set sequences is examined.
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1. Introduction

The notion of convergence for double sequences was introduced by Pringsheim
[31]. Then, this notion was extended to the concept of statistical convergence
by Mursaleen and Edely [18], the concept of lacunary statistical convergence by
Patterson and Savaş [29] and the concept of I-convergence by Das et al. [7].
Particularly, more studies in different settings on the concept of I-convergence
were done by many authors, especially Mursaleen [19, 20, 21, 22, 23]. Recently,
new notions of convergence of order α for double sequences were studied by
Bhunia et al. [4], Çolak and Altın [6], Savaş [33] and Altın et al.[1].

For double sequences, the notion of asymptotical equivalence was introduced
by Patterson [28]. Then, this notion was extended to the concept of asymptotical
double lacunary statistical equivalence by Esi [10], the concept of asymptotical
I-equivalence by Hazarika and Kumar [15] and the concept of asymptotical
double statistical equivalence by Esi and Açıkgöz [11].
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Over the years, many authors have been studying on the notions of various
convergence for set sequences. One of them, handled in this study, is the notion of
Wijsman convergence ([2, 3, 45]). Using the concepts of statistical convergence,
lacunary sequence and I-convergence, the notion of Wijsman convergence was
extended to new convergence concepts for double set sequences by many authors
([9, 24, 25, 27, 42]).

For double set sequences, the notions of asymptotical equivalence in Wijs-
man sense were introduced by Nuray et al. [26] and studied by many authors
([40, 41]). Ulusu and Dündar [40] introduced the concepts of Wijsman asymp-
totical I2-lacunary statistical equivalence and Wijsman asymptotical strong
I2-lacunary equivalence for double set sequences. Recently, new notions of
asymptotical equivalence of order α for double set sequences was studied by
Gülle [14], Ulusu and Gülle [44].

More study on notions of convergence or asymptotical equivalence for real
sequences or set sequences can be found in [5, 8, 12, 13, 16, 30, 32, 35, 36, 37,
38, 39, 43].

2. Preliminaries

For the study to be more understandable, some basic definitions and notations
are needed. First of all, let’s give these concepts below ([2, 3, 7, 17, 26, 28, 29,
31, 40, 44, 45]).

A double sequence (amn) is called convergent to L (in Pringsheim sense)
if every ξ > 0, there exist Nξ ∈ N (the set of natural numbers) such that
|amn − L| < ξ, when ever m,n > Nξ.

A family of sets I ⊆ PN (the power set of N) is said to be an ideal iff
(i) ∅ ∈ I, (ii) E ∪ F ∈ I for each E,F ∈ I, (iii) F ∈ I for each E ∈ I and

F ⊆ E.
An ideal I ⊆ PN is said to be non-trivial if N /∈ I and a non-trivial ideal

I ⊆ PN is said to be admissible if {m} ∈ I for each m ∈ N.
A non-trivial ideal I2 ⊆ PN×N is said to be strong admissible if {m}×N and

N × {m} belongs to I2 for each m ∈ N. Obviously, a strong admissible ideal is
admissible.

Throughout the study, I2 ⊆ PN×N will taken a strong admissible ideal.
Two non-negative double sequences (amn) and (bmn) are called asymptotical

equivalent if

lim
m,n→∞

amn
bmn

= 1

and denoted by amn ∼ bmn.
Let Y be non-empty set. A function g : N → PY is defined g(m) = Vm ∈ PY

for each m ∈ N. The sequence {Vm} = {V1, V2, . . .}, which the range’ elements
of g, is called sequences of sets.
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Let (Y, d) be metric space. For any y ∈ Y and any non-empty V ⊆ Y , the
distance from y to V is defined

ρ(y, V ) = inf
v∈V

d(y, v).

A double sequence {Vmn} is called Wijsman convergent to V if each y ∈ Y ,
lim

m,n→∞
ρ(y, Vmn) = ρ(y, V ).

Throughout the study, (Y, d) will taken a metric space and Umn, Vmn will
taken any non-empty closed subsets of Y .

The term ρy

(Umn
Vmn

)
is defined as follows:

ρy

(Umn
Vmn

)
=


ρ(y, Umn)

ρ(y, Vmn)
, y ̸∈ Umn ∪ Vmn

λ , y ∈ Umn ∪ Vmn.
Double sequences {Umn} and {Vmn} are called Wijsman asymptotical equi-

valent if each y ∈ Y ,

lim
m,n→∞

ρy

(Umn
Vmn

)
= 1.

Double sequences {Umn} and {Vmn} are called Wijsman asymptotical
I2-equivalent of multiple λ if every ξ > 0 and each y ∈ Y ,{

(m,n) ∈ N× N :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2.

Double sequences {Umn} and {Vmn} are called Wijsman asymptotical
I2-statistical equivalent of multiple λ if every ξ, δ > 0 and each y ∈ Y ,{
(i, j) ∈ N× N :

1

ij

∣∣∣∣{(m,n) : m ≤ i, n ≤ j,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}
∈ I2.

A double sequence θ2 = {(js, kt)} is said to be double lacunary sequence if
there exists increasing sequences of the integers such that
j0 = 0, hs = js − js−1 → ∞ and k0 = 0, h̄t = kt − kt−1 → ∞ as s, t→ ∞.

Throughout the study, regarding lacunary sequence θ2 = {(js, kt)}, we will
use the following notations:
ℓst = jskt, hst = hsh̄t, Ist = {(m,n) : js−1 < m ≤ js and kt−1 < n ≤ kt}

qs =
js
js−1

and qt =
kt
kt−1

.

Throughout the study, θ2 = {(js, kt)} will taken a double lacunary sequence.
Double sequences {Umn} and {Vmn} are called Wijsman asymptotical

I2-lacunary statistical equivalent of multiple λ if every ξ, δ > 0 and each y ∈ Y ,{
(s, t) ∈ N× N :

1

hst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}
∈ I2.
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The class of Wijsman asymptotical I2-lacunary statistical equivalent double
sequences is denoted by Sθ

(
IλW2

)
.

Double sequences {Umn} and {Vmn} are called Wijsman asymptotical strong
I2-lacunary equivalent of multiple λ if every ξ > 0 and each y ∈ Y ,{

(s, t) ∈ N× N :
1

hst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2.

The class of Wijsman asymptotical strong I2-lacunary equivalent double
sequences is denoted by Nθ

[
IλW2

]
.

Double sequences {Umn} and {Vmn} are called Wijsman asymptotical
I2-statistical equivalent to multiple λ of order η if every ξ, δ > 0 and each
y ∈ Y ,{
(i, j) ∈ N× N :

1

(ij)η

∣∣∣∣{(m,n) : m ≤ i, n ≤ j,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}
∈ I2

and denoted by Umn
IW
2 (Sη

λ)∼ Vmn.
Double sequences {Umn} and {Vmn} are called Wijsman asymptotical strong

I2-Cesàro equivalent to multiple λ of order η if every ξ > 0 and each y ∈ Y ,{
(i, j) ∈ N× N :

1

(ij)η

i,j∑
m,n=1,1

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2

and denoted by Umn
IW
2 [Cη

λ ]∼ Vmn.

3. New Concepts

In this section, for double set sequences, we introduce notion of Wijsman
asymptotical I2-lacunary statistical equivalence of order η and notions of Wijs-
man asymptotical strong I2-lacunary equivalence of order η where 0 < η ≤ 1.

Definition 3.1. Let 0 < η ≤ 1 and θ2 = {(js, kt)} be double lacunary sequence.
Double sequences {Umn} and {Vmn} are Wijsman asymptotical I2-lacunary sta-
tistical equivalent to multiple λ of order η if every ξ, δ > 0 and each y ∈ Y ,{

(s, t) ∈ N× N :
1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}
∈ I2.

Also, we write Umn
IW
θ2

(Sη
λ)∼ Vmn and Wijsman asymptotical I2-lacunary statis-

tical equivalent of order η if λ = 1.

The class of Wijsman asymptotical I2-lacunary statistical equivalent to
multiple λ of order η double sequences will denoted by IWθ2 (S

η
λ).
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Example 3.2. Let Y = R2 and double sequences {Umn} and {Vmn} be defined
as following:

Umn :=

 {(a, b) ∈ R2 : (a+ 1)2 + b2 =
1

mn
} , if

js−1 < m < js−1 + [
√
hs],

kt−1 < n < kt−1 + [
√
ht],

mn is a square integer.
{(0, 0)} , otherwise.

and

Vmn :=

 {(a, b) ∈ R2 : (a− 1)2 + b2 =
1

mn
} , if

js−1 < m < js−1 + [
√
hs],

kt−1 < n < kt−1 + [
√
ht],

mn is a square integer.
{(0, 0)} , otherwise.

If we take I2 = If2 , (I
f
2 is the class of finite subsets of N × N), the double

sequences {Umn} and {Vmn} are Wijsman asymptotical I2-lacunary statistical
equivalent of order η.

Remark 3.1. For η = 1, concept of Wijsman asymptotical I2-lacunary sta-
tistical equivalence to multiple λ of order η coincides with concept of Wijsman
asymptotical I2-lacunary statistical equivalence of multiple λ for double set se-
quences in [40].

Definition 3.3. Let 0 < η ≤ 1 and θ2 = {(js, kt)} be double lacunary sequence.
Double sequences {Umn} and {Vmn} are Wijsman asymptotical
I2-lacunary equivalent to multiple λ of order η if every ξ > 0 and each y ∈ Y ,{

(s, t) ∈ N× N :

∣∣∣∣ 1

hηst

∑
(m,n)∈Ist

ρy

(Umn
Vmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2.

Also, we write Umn
IW
θ2

(Nη
λ )

∼ Vmn and Wijsman asymptotical I2-lacunary equi-
valent of order η if λ = 1.

Definition 3.4. Let 0 < η ≤ 1 and θ2 = {(js, kt)} be double lacunary
sequence. Double sequences {Umn} and {Vmn} are Wijsman asymptotical strong
I2-lacunary equivalent to multiple λ of order η if every ξ > 0 and each y ∈ Y ,{

(s, t) ∈ N× N :
1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2.

Also, we write Umn
IW
θ2

[Nη
λ ]

∼ Vmn and Wijsman asymptotical strong I2-lacunary
equivalent of order η if λ = 1.

The class of Wijsman asymptotical strong I2-lacunary equivalent to multiple
λ of order η double sequences will denoted by IWθ2 [N

η
λ ].
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Example 3.5. Let Y = R2 and double sequences {Umn} and {Vmn} be defined
as following:

Umn :=


{
(a, b) :

a2

2mn
+

(b+
√
mn)2

mn
= 1

}
, if

js−1 < m < js−1 + [
√
hs],

kt−1 < n < kt−1 + [
√
ht].

{(1, 1)} , otherwise.

and

Vmn :=


{
(a, b) :

a2

2mn
+

(b−
√
mn)2

mn
= 1

}
, if

js−1 < m < js−1 + [
√
hs],

kt−1 < n < kt−1 + [
√
ht].

{(1, 1)} , otherwise.

If we take I2 = If2 , the double sequences {Umn} and {Vmn} are Wijsman
asymptotical strong I2-lacunary equivalent of order η.

Remark 3.2. For η = 1, concept of Wijsman asymptotical strong I2-lacunary
equivalence to multiple λ of order η coincides with concept of Wijsman asymp-
totical strong I2-lacunary equivalence of multiple λ for double set sequences in
[40].

Definition 3.6. Let 0 < η ≤ 1, 0 < p < ∞ and θ2 = {(js, kt)} be double
lacunary sequence. Double sequences {Umn} and {Vmn} are Wijsman asymp-
totical strong p− I2-lacunary equivalent to multiple λ of order η if every ξ > 0
and each y ∈ Y ,{

(s, t) ∈ N× N :
1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ ξ

}
∈ I2.

Also, we write Umn
IW
θ2

[Nη
λ ]p

∼ Vmn and Wijsman asymptotical strong p − I2-
lacunary equivalent of order η if λ = 1.

4. Inclusion Theorems

In this section, firstly, we investigate some properties of the new asympto-
tical equivalence concepts that introduced in Section 3 and some relationships
between them.

Theorem 4.1. Let θ2 = {(js, kt)} be double lacunary sequence. Then,
i. If 0 < η ≤ µ ≤ 1, then IWθ2 (S

η
λ) ⊆ IWθ2 (S

µ
λ ).

ii. Particularly, for µ = 1, IWθ2 (S
η
λ) ⊆ Sθ(IλW2

).

Proof. i.) Suppose that 0 < η ≤ µ ≤ 1 and Umn
IW
θ2

(Sη
λ)∼ Vmn. For every ξ > 0

and each y ∈ Y , we have
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1

hµst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
≤ 1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
and so for every δ > 0,{
(s, t) ∈ N× N :

1

hµst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}

⊆
{
(s, t) ∈ N× N :

1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}
.

Since the set on right side belongs to the ideal I2 by our assumption, the set on
left side also belongs to I2. Consequently, IWθ2 (S

η
λ) ⊆ IWθ2 (S

µ
λ ).

ii.) If we take µ = 1 in item (i), it is obvious. �

Theorem 4.2. Let θ2 = {(js, kt)} be double lacunary sequence. Then,
i. If 0 < η ≤ µ ≤ 1 and 0 < p <∞, then IWθ2 [N

η
λ ]
p ⊆ IWθ2 [N

µ
λ ]
p.

ii. Particularly, for µ = 1 and p = 1, IWθ2 [N
η
λ ] ⊆ Nθ[IλW2

].

Proof. i.) Suppose that 0 < η ≤ µ ≤ 1 and Umn
IW
θ2

[Nη
λ ]p

∼ Vmn. For each y ∈ Y ,
we have

1

hµst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≤ 1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p
and so for every ξ > 0,{
(s, t) ∈ N× N :

1

hµst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ ξ

}

⊆

{
(s, t) ∈ N× N :

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ ξ

}
.

Since the set on right side belongs to the ideal I2 by our assumption, the set on
left side also belongs to I2. Consequently, IWθ2 [N

η
λ ]
p ⊆ IWθ2 [N

µ
λ ]
p.

ii.) If we take µ = 1 and p = 1 in item (i), it is obvious. �

Now, we shall express a theorem. This theorem gives a relationship between
IWθ2 [N

η
λ ]
p and IWθ2 [N

η
λ ]
q where 0 < η ≤ 1 and 0 < p < q <∞.
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Theorem 4.3. If 0 < η ≤ 1 and 0 < p < q <∞, then IWθ2 [N
η
λ ]
q ⊂ IWθ2 [N

η
λ ]
p.

Proof. Assume that 0 < p < q < ∞ and Umn
IW
θ2

[Nη
λ ]q

∼ Vmn. By the Hölder
inequality, for each y ∈ Y we have

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p < 1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣q
and so for every ξ > 0,{
(s, t) ∈ N× N :

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ ξ

}

⊂

{
(s, t) ∈ N× N :

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣q ≥ ξ

}
.

Hence, by our assumption, we get Umn
IW
θ2

[Nη
λ ]p

∼ Vmn. Consequently, IWθ2 [N
η
λ ]
q ⊂

IWθ2 [N
η
λ ]
p. �

Theorem 4.4. If double sequences {Umn} and {Vmn} are Wijsman asympto-
tical strong p− I2-lacunary equivalent to multiple λ of order η, then the double
sequences are Wijsman asymptotical I2-lacunary statistical equivalent to multiple
λ of order µ where 0 < η ≤ µ ≤ 1 and 0 < p <∞.

Proof. Assume that 0 < η ≤ µ ≤ 1 and double sequences {Umn} and {Vmn} are
Wijsman asymptotical strong p− I2-lacunary equivalent to multiple λ of order
η. For every ξ > 0 and each y ∈ Y , we have∑

(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ ∑
(m,n)∈Ist∣∣∣∣∣∣ρy
(Umn
Vmn

)
−λ

∣∣∣∣∣∣≥ξ

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p

≥ ξp
∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
and so

1

ξp hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ 1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
≥ 1

hµst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ .
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Then for any δ > 0,{
(s, t) ∈ N× N :

1

hµst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}

⊆

{
(s, t) ∈ N× N :

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣p ≥ ξp δ

}
.

Since the set on right side belongs to the ideal I2 by our assumption, the set
on left side also belongs to I2. Consequently, we get that the double sequences
{Umn} and {Vmn} are Wijsman asymptotical I2-lacunary statistical equivalent
to multiple λ of order µ. �

If µ = η is taken in the Theorem 4.4, then the following corollary is obtained.
Corollary 4.5. If double sequences {Umn} and {Vmn} are Wijsman asympto-
tical strong p− I2-lacunary equivalent to multiple λ of order η, then the double
sequences are Wijsman asymptotical I2-lacunary statistical equivalent to multiple
λ of order η where 0 < η ≤ 1 and 0 < p <∞.

Now, secondly, we investigate the relationships between the new asymptotical
equivalence concepts that introduced in Section 3 and previously studied some
asymptotical equivalence concepts for double set sequences.
Theorem 4.6. Let θ2 = {(js, kt)} be double lacunary sequence. If
lim infs q

η
s > 1 and lim inft q

η
t > 1 where 0 < η ≤ 1, then

Umn
IW
2 (Sη

λ)∼ Vmn ⇒ Umn
IW
θ2

(Sη
λ)∼ Vmn.

Proof. Let double sequences {Umn} and {Vmn} are Wijsman asymptotical
I2-statistical equivalent to multiple λ of order η. Also assume that lim infs q

η
s > 1

and lim inft q
η
t > 1. Then, there exist α, β > 0 such that qηs ≥ 1+α and qηt ≥ 1+β

for all s, t, which implies that
hηst
ℓηst

≥ αβ

(1 + α)(1 + β)
.

For every ξ > 0 and each y ∈ Y , we have
1

ℓηst

∣∣∣∣{(m,n) : m ≤ js, n ≤ kt,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
≥ 1

ℓηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
=
hηst
ℓηst

1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
≥ αβ

(1 + α)(1 + β)

1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
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and so for any δ > 0,{
(s, t) ∈ N× N :

1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}

⊆
{
(s, t) ∈ N× N :

1

ℓηst

∣∣∣∣{(m,n) : m ≤ js, n ≤ kt,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
≥ αβ δ

(1 + α)(1 + β)

}
.

Since the set on right side belongs to the ideal I2 by our assumption, the set on

left side also belongs to I2. Consequently, Umn
IW
θ2

(Sη
λ)∼ Vmn. �

Theorem 4.7. Let θ2 = {(js, kt)} be double lacunary sequence. If
lim sups qs <∞ and lim supt qt <∞, then

Umn
IW
θ2

(Sη
λ)∼ Vmn ⇒ Umn

IW
2 (Sη

λ)∼ Vmn

where 0 < η ≤ 1.

Proof. Let double sequences {Umn} and {Vmn} are Wijsman asymptotical
I2-lacunary statistical equivalent to multiple λ of order η. Also assume that
lim sups qs < ∞ and lim supt qt < ∞. Then, there exist M,N > 0 such that
qs < M and qt < N for all s, t. Let

κst :=

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ .
Since Umn

IW
θ2

(Sη
λ)∼ Vmn; for every ξ, δ > 0, each y ∈ Y we have{

(s, t) ∈ N× N :
1

hηst

∣∣∣∣{(m,n) ∈ Ist :

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ

}

=

{
(s, t) ∈ N× N :

κst
hηst

≥ δ

}
∈ I2.

Hence, we can choose s0, t0 ∈ N such that
κst
hηst

< δ

for all s ≥ s0, t ≥ t0. Now take the value γ as

γ := max{κru : 1 ≤ s ≤ s0, 1 ≤ t ≤ t0}

and let i and j be integers satisfying js−1 < i ≤ js and kt−1 < j ≤ kt. Then, we
have
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1

(ij)η

∣∣∣∣{(m,n) : m ≤ i, n ≤ j,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
≤ 1

ℓη(s−1)(t−1)

∣∣∣∣{(m,n) : m ≤ js, n ≤ kt,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣
=

1

ℓη(s−1)(t−1)

{
κ11 + κ12 + κ21 + κ22 + · · ·+ κs0t0 + · · ·+ κst

}

≤ s0 t0
ℓη(s−1)(t−1)

(
max

1≤m≤s0
1≤n≤t0

{κmn}

)
+

1

ℓη(s−1)(t−1)

{
hηs0(t0+1)

κs0(t0+1)

hηs0(t0+1)

+ hη(s0+1)t0

κ(s0+1)t0

hη(s0+1)t0

+ hη(s0+1)(t0+1)

κ(s0+1)(t0+1)

hη(s0+1)(t0+1)

+ · · ·+ hηst
κst
hηst

}

≤ s0 t0 γ

ℓη(s−1)(t−1)

+
1

ℓη(s−1)(t−1)

(
sup
s>s0
t>t0

{κst
hηst

})( s,t∑
m≥s0
n≥t0

hmn

)

≤ s0 t0 γ

ℓη(s−1)(t−1)

+
1

ℓ(s−1)(t−1)

(
sup
s>s0
t>t0

{κst
hηst

})( s,t∑
m≥s0
n≥t0

hmn

)

≤ s0 t0 γ

ℓη(s−1)(t−1)

+ δ
(js − js0)(kt − kt0)

ℓ(s−1)(t−1)

≤ s0 t0 γ

ℓη(s−1)(t−1)

+ δ qs qt

≤ s0 t0 γ

ℓη(s−1)(t−1)

+ δM N.

Since js−1, kt−1 → ∞ as i, j → ∞, it follows that for each y ∈ Y

1

(ij)η

∣∣∣∣{(m,n) : m ≤ i, n ≤ j,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣→ 0

and so for any δ1 > 0{
(i, j) ∈ N× N :

1

(ij)η

∣∣∣∣{(m,n) : m ≤ i, n ≤ j,

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}∣∣∣∣ ≥ δ1

}
∈ I2.

Consequently, Umn
IW
2 (Sη

λ)∼ Vmn. �
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Theorem 4.8. Let θ2 = {(js, kt)} be double lacunary sequence. If

1 < lim inf
s

qηs ≤ lim sup
s

qs <∞ and 1 < lim inf
t

qηt ≤ lim sup
t

qt <∞

where 0 < η ≤ 1, then

Umn
IW
2 (Sη

λ)∼ Vmn ⇔ Umn
IW
θ2

(Sη
λ)∼ Vmn

Proof. This can be obtained from Theorem 4.6 and Theorem 4.7, immediately.
�

Theorem 4.9. Let θ2 = {(js, kt)} be double lacunary sequence. If
lim infs q

η
s > 1 and lim inft q

η
t > 1 where 0 < η ≤ 1, then

Umn
IW
2 [Cη

λ ]∼ Vmn ⇒ Umn
IW
θ2

[Nη
λ ]

∼ Vmn.

Proof. Let double sequences {Umn} and {Vmn} are Wijsman asymptotical strong
I2-Cesàro equivalent to multiple λ of order η. Also suppose that lim infs q

η
s > 1

and lim inft q
η
t > 1. Then, there exist α, β > 0 such that qηs ≥ 1 + α and

qηt ≥ 1 + β for all s, t, which implies that

ℓηst
hηst

≤ (1 + α)(1 + β)

αβ
and

ℓη(s−1)(t−1)

hηst
≤ 1

αβ
.

For each y ∈ Y , we have

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ = 1

hηst

js,kt∑
r,u=1,1

∣∣∣∣ρy(UruVru

)
− λ

∣∣∣∣
− 1

hηst

js−1,kt−1∑
r,u=1,1

∣∣∣∣ρy(UruVru

)
− λ

∣∣∣∣
=
ℓηst
hηst

(
1

ℓηst

js,kt∑
r,u=1,1

∣∣∣∣ρy(UruVru

)
− λ

∣∣∣∣
)

−
ℓη(s−1)(t−1)

hηst

(
1

ℓη(s−1)(t−1)

js−1,kt−1∑
r,u=1,1

∣∣∣∣ρy(UruVru

)
− λ

∣∣∣∣
)
.

Since Umn
IW
2 [Cη

λ ]∼ Vmn, for each y ∈ Y the following limits are hold

1

ℓηst

js,kt∑
r,u=1,1

∣∣∣∣ρy(UruVru

)
− λ

∣∣∣∣→ 0 and 1

ℓη(s−1)(t−1)

js−1,kt−1∑
r,u=1,1

∣∣∣∣ρy(UruVru

)
− λ

∣∣∣∣→ 0.
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Thus, when the above equality is considered, it follows that for each y ∈ Y

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣→ 0

and so for any ξ > 0{
(s, t) ∈ N× N :

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2.

Consequently, Umn
IW
θ2

[Nη
λ ]

∼ Vmn. �

Theorem 4.10. Let θ2 = {(js, kt)} be double lacunary sequence. If
lim sups qs <∞ and lim supt qt <∞, then

Umn
IW
θ2

[Nη
λ ]

∼ Vmn ⇒ Umn
IW
2 [Cη

λ ]∼ Vmn

where 0 < η ≤ 1.

Proof. Let double sequences {Umn} and {Vmn} are Wijsman asymptotical strong
I2-lacunary equivalent to multiple λ of order η. Also suppose that
lim sups qs < ∞ and lim supt qt < ∞. Then, there exist M,N > 0 such that

qs < M and qt < N for all s, t. Since Umn
IW
θ2

[Nη
λ ]

∼ Vmn; for a given ξ > 0 and
each y ∈ Y we can find s0, t0 > 0 and ϑ > 0 such that

sup
m≥s0
n≥t0

τmn < ξ and τmn < ϑ for all m,n = 1, 2, . . .

where
τst =

1

hηst

∑
(m,n)∈Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ .
If i and j are any integers satisfying js−1 < i ≤ js and kt−1 < j ≤ kt where
s > s0 and t > t0, then for each y ∈ Y we have

1

(ij)η

i,j∑
m,n=1,1

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≤ 1

ℓη(s−1)(t−1)

js,kt∑
m,n=1,1

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣
=

1

ℓη(s−1)(t−1)

(∑
I11

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣
+
∑
I12

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣+∑
I21

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣
+
∑
I22

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣+ · · ·+
∑
Ist

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣
)
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=
hη11

ℓη(s−1)(t−1)

τ11 +
hη12

ℓη(s−1)(t−1)

τ12 +
hη21

ℓη(s−1)(t−1)

τ21

+
hη22

ℓη(s−1)(t−1)

τ22 + · · ·+ hηst
ℓη(s−1)(t−1)

τst

≤
s0,t0∑

m,n=1,1

hmn
ℓ(s−1)(t−1)

τmn +

s,t∑
m,n=s0+1,t0+1

hmn
ℓ(s−1)(t−1)

τmn

≤

(
sup

1≤m≤s0
1≤n≤t0

τmn

)
ℓs0t0

ℓ(s−1)(t−1)
+

(
sup
m≥s0
n≥t0

τmn

)
(js − js0)(kt − kt0)

ℓ(s−1)(t−1)

≤ ϑ
ℓs0t0

ℓ(s−1)(t−1)
+ ξ M N.

Since js−1, kt−1 → ∞ as i, j → ∞, it follows that for each y ∈ Y

1

(ij)η

i,j∑
m,n=1,1

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣→ 0

and so for any ξ > 0{
(i, j) ∈ N× N :

1

(ij)η

i,j∑
m,n=1,1

∣∣∣∣ρy(UmnVmn

)
− λ

∣∣∣∣ ≥ ξ

}
∈ I2.

Consequently, Umn
IW
2 [Cη

λ ]∼ Vmn. �

Theorem 4.11. Let θ2 = {(js, kt)} be double lacunary sequence. If
1 < lim inf

s
qηs ≤ lim sup

s
qs <∞ and 1 < lim inf

t
qηt ≤ lim sup

t
qt <∞

where 0 < η ≤ 1, then

Umn
IW
2 [Cη

λ ]∼ Vmn ⇔ Umn
IW
θ2

[Nη
λ ]

∼ Vmn.

Proof. This can be obtained from Theorem 4.9 and Theorem 4.10, immediately.
�

5. Conclusions and Future Work

We presented new convergence concepts for double set sequences which are
called Wijsman asymptotical I2-lacunary statistical equivalence of order η and
Wijsman asymptotical strong I2-lacunary equivalence of order η where
0 < η ≤ 1. Also, we studied the relationships between them. Using the concepts
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of invariant mean and modulus function, these concepts can also be extended to
more general convergence concepts for double set sequences in the future.

Competing Interests : The authors declare that there is not any conflict
of interests regarding the publication of this manuscript.
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