DOI QR코드

DOI QR Code

Low Temperature Sintering of Lead-Free Bi1/2Na1/2TiO3-SrTiO3 Piezoceramics by Li2CO3-B2O3 Addition

Li2CO3와 B2O3를 첨가한 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 저온 소성 연구

  • Lee, Sang Sub (Department of Materials Science and Engineering, University of Ulsan) ;
  • Park, Young-Seok (Department of Materials Science and Engineering, University of Ulsan) ;
  • Duong, Trang An (Department of Materials Science and Engineering, University of Ulsan) ;
  • Devita, Mukhlishah Aisyah (Department of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (Department of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (Department of Materials Science and Engineering, University of Ulsan)
  • Received : 2021.08.07
  • Accepted : 2021.09.30
  • Published : 2022.01.01

Abstract

This study investigated microstructures, crystal structures, polarization, dielectric and electromechanical properties of 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 (BNT-24ST)-based piezoceramcs by adding Li2CO3 and B2O3 (LB) as sintering aids for low-temperature sintering. All samples were successfully synthesized using conventional solid-state reaction method and sintered at 950, 1,000, 1,050, 1,100 and 1,175℃ for 2 hours. Without LB, specimens required sintering temperatures over 1,175℃ for sufficient densification, while the addition of 0.10-mol LB decreased the sintering temperatures down to 950℃. The average grain size and dielectric properties of BNT-24ST-10LB ceramics were enhanced with increasing sintering temperature. We found that the low-temperature sintered BNT-24ST piezoceramics by adding LB showed the d33*value of 402 pm/V at 4 kV/mm after sintering at 1,050℃, which was better than that of high-temperature fired specimens sintered at 1,175℃ without LB (242 pm/V). We believe that the results of this study promise a candidate for low-cost multilayer ceramic actuator applications.

Keywords

Acknowledgement

이 성과는 정부(교육부, 과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 것임(과제번호: 2016R1D1A3B01008169, 과제번호: 2020R1C1C1007375).

References

  1. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.12.013]
  2. J. Wu, J. Appl. Phys., 127, 190901 (2020). [DOI: https://doi.org/10.1063/5.0006261]
  3. J. Hao, W. Li, J. Zhai, and H. Chen, Mater. Sci. Eng., 135, 1 (2019). [DOI: https://doi.org/10.1016/j.mser.2018.08.001]
  4. T. Zheng, J. Wu, D. Xiao, and J. Zhu. Prog. Mater. Sci., 98, 552 (2018). [DOI: https://doi.org/10.1016/j.pmatsci.2018.06.002]
  5. H.T.K. Nguyen, T. A. Duong, S. S. Lee, C. W. Ahn, H. S. Han, and J. S. Lee, J. Mater. Res., 36, 1048 (2021). [DOI: https://doi.org/10.1557/s43578-020-00080-7]
  6. S. H. Lee, S. H. Kim, F. Erkinov, H.T.K. Nguyen, T. A. Duong, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 37 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.1.37]
  7. S. H. Kim, S. H. Lee, H. S. Han, and J. S. Lee, J. Korean Ceram. Soc., 32, 35 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.35]
  8. H.T.K. Nguyen, T. A. Duong, F. Erkinov, H. Kang, B. W. Kim, C. W. Ahn, H. S. Han, and J. S. Lee, J. Korean Ceram. Soc., 57, 570 (2020). [DOI: https://doi.org/10.1007/s43207-020-00051-y]
  9. T. H. Dinh, J. K. Kang, J. S. Lee, N. H. Khansur, J. Daniels, H. Y. Lee, F. Z. Yao, K. Wang, J. F. Li, H. S. Han, and W. Jo, J. Eur. Ceram. Soc., 36, 3401 (2016). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.05.044]
  10. S. H. Lee, S. H. Kim, F. Erkinov, H.T.K. Nguyen, T. A. Duong, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 37 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.1.37]
  11. T. H. Dinh, V.D.N. Tran, T. T. Nguyen, Q.T.N. Hoang, H. S. Han, and J. S. Lee, Ceram. Int., 43, 17160 (2017). [DOI: https://doi.org/10.1016/j.ceramint.2017.09.138]
  12. W. Bai, D. Chem, P. Zheng, J. Zheng, F. Wen, B. Shen, J. Zhai, and Z. Ji, J. Alloys Compd., 709, 646 (2017). [DOI: https://doi.org/10.1016/j.jallcom.2017.03.185]
  13. S. Jo, C. H. Hong, D. S. Kim, H. W. Kang, C. W. Ahn, H. G. Lee, S. Nahm, W. Jo, and S. H. Han, Sens. Actuators, A, 258, 201 (2017). [DOI: https://doi.org/10.1016/j.sna.2017.03.008]
  14. T. A. Duong, H. S. Han, Y. H. Hong, Y. S. Park, H.T.K. Nguyen, T. H. Dinh, and J. S. Lee, J. Electroceram., 41, 73 (2018). [DOI: https://doi.org/10.1007/s10832-018-0161-y]
  15. M. Acosta, L. A. Schmitt, L. Molina-Luna, M. C. Scherrer, M. Brilz, K. G. Webber, M. Deluca, H. J. Kleebe, J. Rodel, and W. Donner, J. Am. Ceram. Soc., 98, 3405 (2015). [DOI: https://doi.org/10.1111/jace.13853]
  16. M. Acosta, W. Jo, and J. Rodel, J. Am. Ceram. Soc., 97, 1937 (2014). [DOI: https://doi.org/10.1111/jace.12884]
  17. P. Fan, Y. Zhang, Y. Zhu, W. Ma, K. Liu, X. He, M, A. Marwat, B. Xie, M. Li, and H. Zhang, J. Am. Ceram. Soc., 102, 4113 (2018). [DOI: https://doi.org/10.1111/jace.16256]
  18. G. H. Jeong, S. S. Lee, C. W. Ahn, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 337 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.5.337]
  19. C. H. Lee, H. S. Han, S. H. Kim, T. H. Dinh, C. W. Ahn, and J. S. Lee, J. Electroceram., 41, 43 (2018). [DOI: https://doi.org/10.1007/s10832-018-0151-0]
  20. J. K. Kang, T. H. Dinh, C. H. Lee, H. S. Han, J. S. Lee, and V.D.N. Tran, J. Korean Inst. Electr. Electron. Mater. Eng., 18, 1 (2017). [DOI: https://doi.org/10.4313/TEEM.2017.18.1.1]
  21. S. H. Shin, J. D. Han, and J. Yoo, Mater. Lett., 154, 120 (2015). [DOI: https://doi.org/10.1016/j.matlet.2015.03.121]
  22. P. Jarupoom, K. Pengpat, and G. Rujijanagul, Curr. Appl. Phys., 10, 557 (2010). [DOI: https://doi.org/10.1016/j.cap.2009.07.020]
  23. T. H. Chung and K. W. Kwok, J. Alloys Compd., 737, 317 (2018). [DOI: https://doi.org/10.1016/j.jallcom.2017.11.355]
  24. S. Guan, H. Yang, Y. Zhao, and R. Zhang, J. Alloys Compd., 735, 386 (2018). [DOI: https://doi.org/10.1016/j.jallcom.2017.11.156]
  25. Y. Wang, R. Ma, X. Zhang, L. Zhao, and B. Cui, J. Electron. Mater., 48, 7081 (2019). [DOI: https://doi.org/10.1007/s11664-019-07502-1]
  26. K. Yan, K. Matsumoto, T. Karaki, and M. Adachi, J. Am. Ceram. Soc., 93, 3823 (2010). [DOI: https://doi.org/10.1111/j.1551-2916.2010.03932.x]
  27. X. X. Wang, H.L.W. Chan, and C. L. Choy, Appl. Phys. A, 80, 333 (2005). [DOI: https://doi.org/10.1007/s00339-003-2210-9]
  28. T. Hu, H. Jantunen, A. Deleniv, S. Leppavuori, and S. Gevorgian, J. Am. Ceram. Soc., 87, 578 (2004). [DOI: https://doi.org/10.1111/j.1551-2916.2004.00578.x]
  29. S. M. Lee, D. S. Choi, and S.J.L. Kang, J. Korean Powder Metall. Inst., 6, 81 (1999).
  30. J. R. Kim, D. W. Kim, I. S. Cho, B. S. Kim, J. S. An, and K. S. Hong, J. Eur. Ceram. Soc., 27, 3075 (2007). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.11.036]
  31. J. R. Kim, D. W. Kim, S. H. Yoon, and K. S. Hong, J. Electroceram., 17, 439 (2006). [DOI: https://doi.org/10.1007/s10832-006-0453-5]
  32. D. K. Yim, J. R. Kim, D. W. Kim, and K. S. Hong, J. Eur. Ceram. Soc., 27, 3053 (2007). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.11.029]
  33. T. Hu, H. Jantunen, A. Deleniv, S. Leppavuori, and S. Gevorgian, J. Am. Ceram. Soc., 87, 578 (2004). [DOI: https://doi.org/10.1111/j.1551-2916.2004.00578.x]
  34. I. Shajahan, H. P. Dasari, and M. B. Saidutta, Int. J. Hydrogen Energy, 45, 25935 (2020). [DOI: https://doi.org/10.1016/j.ijhydene.2020.06.163]
  35. G. Bernard-Granger and C. Guizard, Acta Mater., 56, 6273 (2008). [DOI: https://doi.org/10.1016/j.actamat.2008.08.054]
  36. H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, and J. Rodel, J. Eur. Ceram. Soc., 35, 2501 (2015). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.03.012]
  37. G. Liu, J. Dong, L. Zhang, Y. Yan, R. Jing, and L. Jin, J. Materiomics, 6, 677 (2020). [DOI: https://doi.org/10.1016/j.jmat.2020.05.005]
  38. Y. R. Zhang, J. F. Li, and B. P. Zhang, J. Am. Ceram. Soc., 91, 2716 (2008). [DOI: https://doi.org/10.1111/j.1551-2916.2008.02469.x]