DOI QR코드

DOI QR Code

Structural, Electrical, and Optical Properties of AGZO Thin Films Using RF Magnetron Sputtering System Under Ar Flow Rates

RF 마그네트론 스퍼터링 시스템을 이용하여 증착한 AGZO 박막의 Ar 유량에 따른 구조적, 전기적, 광학적 특성

  • Jang, Seok-Hyeon (Department of Electrical Engineering, Wonkwang University) ;
  • Kim, Deok Kyu (Department of Electrical Engineering, Wonkwang University)
  • Received : 2021.08.20
  • Accepted : 2021.09.23
  • Published : 2022.01.01

Abstract

AGZO thin films were deposited on glass substrates using RF magnetron sputtering system under Ar flow rates, and their structural, electrical, and optical properties were analyzed systematically. As a result of the XRD pattern, the peak of the (002) (2θ≈33.7˚) orientation was observed, and it was found to have a hexagonal wurtzite structure. The sheet resistance of Ar 5 sccm was 3.073×102 Ω/sq and showed the best electrical properties because of the improvement of mobility due to the increase of the grain size and the variation of RMS roughness. In addition, the average transmittance was more than 90% for all samples, which demonstrated good optical properties. It is expected that the TCO characteristics can be improved by controlling Ar flow rates, and this will increase the efficiency of photoelectronic devices such as OLED and solar cells.

Keywords

Acknowledgement

이 논문은 2020학년도 원광대학교의 교비지원에 의해 수행됨.

References

  1. K. M . Kim, E. M . Jin, and C . B. P ark, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 901 (2006). [DOI: https://doi.org/10.4313/JKEM.2006.19.10.901]
  2. J. B. Park, J. Y. Hwang, D. S. Seo, S. K. Park, D. G. Moon, and J. I. Han, J. Korean Inst. Electr. Electron. Mater. Eng., 16, 1115 (2003). [DOI: https://doi.org/10.4313/JKEM.2003.16.12.1115]
  3. M. H. Chung, S. Kim, D. Yoo, and J. H. Kim, Appl. Chem. Eng., 25, 242 (2014). [DOI: https://doi.org/10.14478/ace.2014.1013]
  4. S. M. Lee, H. B. Kim, and S. Y. Lee, J. Korean Inst. Electr. Elextron. Mater. Eng., 28, 185 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.3.185]
  5. S. K. Sahoo, C. A. Gupta, and U. P. Singh, J. Mater. Sci.: Mater. Electron., 27, 7161 (2016). [DOI: https://doi.org/10.1007/s10854-016-4679-y]
  6. S. H. Jeong and J. B. Boo, Thin Solid Films, 447, 105 (2004). [DOI: https://doi.org/10.1016/j.tsf.2003.09.031]
  7. J. H. Kang, M. H. Lee, D. W. Kim, Y. S. Lim, W. S. Seo, and H. J. Choi, Curr. Appl. Phys., 11, S333 (2011). [DOI: https://doi.org/10.1016/j.cap.2011.01.014]
  8. Y. C. Lin, T. Y. Chen, L. C. Wang, and S. Y. Lien, J. Electrochem. Soc., 159, H599 (2012). [DOI: https://doi.org/10.1149/2.108206jes]
  9. S. H. Cho, S. J. Kim, Y. S. Jo, and S. H. Kim, J. Nanosci. Nanotechnol., 19, 3854 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16268]
  10. F. Lu, X. G. Zhou, C. H. Xu, and L. S. Wen, Phys. Procedia, 32, 135 (2012). [DOI: https://doi.org/10.1016/j.phpro.2012.03.530]
  11. H. R. An, S. H. Baek, I. K. Park, and H. J. Ahn, Korean J. Mater. Res., 23, 469 (2013). [DOI: https://doi.org/10.3740/MRSK.2013.23.8.469]
  12. W. Water and S. Y. Chu, Mater. Lett., 55, 67 (2002). [DOI: https://doi.org/10.1016/S0167-577X(01)00621-8]
  13. S. Ghosh, A. Sarkar, S. Chaudhuri, and A. K. Pal, Thin Solid Films, 205, 64 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90472-A]
  14. J. A. Jeong, H. S. Shin, K. H. Choi, and H. K. Kim, J. Phys. D: Appl. Phys., 43, 465403 (2010). [DOI: https://doi.org/10.1088/0022-3727/43/46/465403]
  15. J. Liu, W. Zhang, D. Song, Q. Ma, L. Zhang, H. Zhang, X. Ma, and H. Song, Ceram. Int., 40, 12905 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2014.04.150]
  16. P. Tyagi and A. G. Vedeshwar, Bull. Mater. Sci., 24, 297 (2001). [DOI: https://doi.org/10.1007/BF02704925]
  17. Y. Liu and S. Zhu, Results Phys., 14, 102514 (2019). [DOI: https://doi.org/10.1016/j.rinp.2019.102514]
  18. H. L. Shen, H. Zhang, L. F. Lu, F. Jiang, and C. Yang, Prog. Nat. Sci.: Mater. Int., 20, 44 (2010). [DOI : https://doi.org/10.1016/S1002-0071(12)60005-7]