• Title/Summary/Keyword: AGZO thin film

Search Result 2, Processing Time 0.016 seconds

Transparent Conductive AGZO-PET Film by Roll-to-Roll Sputter and Its Application to Resistive Type Touch Panel Fabrication

  • Lee, Sang-Ju;Lee, Sang-Mun;Lee, Yoon-Su;Kim, Tae-Hoon;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1535-1537
    • /
    • 2009
  • High performance resistive type touch panel was fabricated on flexible polyethylene terephthalate (PET) substrates coated with Al- and Ga-codoped ZnO (AGZO) films. The AGZO films were deposited by roll-to-roll direct current magnetron sputter at room temperature. The AGZO thin films on PET substrates showed high transparency (> 85 % at 550 nm) and low sheet resistance (450 ${\Omega}$/sq.). These values were similar to those of commercial ITO films used for resistive type touch panel.

  • PDF

Structural, Electrical, and Optical Properties of AGZO Thin Films Using RF Magnetron Sputtering System Under Ar Flow Rates (RF 마그네트론 스퍼터링 시스템을 이용하여 증착한 AGZO 박막의 Ar 유량에 따른 구조적, 전기적, 광학적 특성)

  • Jang, Seok-Hyeon;Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.32-36
    • /
    • 2022
  • AGZO thin films were deposited on glass substrates using RF magnetron sputtering system under Ar flow rates, and their structural, electrical, and optical properties were analyzed systematically. As a result of the XRD pattern, the peak of the (002) (2θ≈33.7˚) orientation was observed, and it was found to have a hexagonal wurtzite structure. The sheet resistance of Ar 5 sccm was 3.073×102 Ω/sq and showed the best electrical properties because of the improvement of mobility due to the increase of the grain size and the variation of RMS roughness. In addition, the average transmittance was more than 90% for all samples, which demonstrated good optical properties. It is expected that the TCO characteristics can be improved by controlling Ar flow rates, and this will increase the efficiency of photoelectronic devices such as OLED and solar cells.