Acknowledgement
This research was supported by the "Ultra-short Quantum Beam Facility Program" and "GIST Research Institute Program" through grants provided by the Gwangju Institute of Science and Technology in 2021. This research is also supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (No. 2021R1A2C1007130), and the Energy AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea (NIPA), funded by the Ministry of Science and ICT (No. S1602-20-1009).
References
- B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, "Microring resonator channel dropping filters," J. Light. Technol. 15, 998-1005 (1997). https://doi.org/10.1109/50.588673
- S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photonics Technol. Lett. 11, 691-693 (1999). https://doi.org/10.1109/68.766787
- W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012). https://doi.org/10.1002/lpor.201100017
- C.-Y. Chung and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Light. Technol. 24, 1395-1402 (2006). https://doi.org/10.1109/JLT.2005.863333
- K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007). https://doi.org/10.1364/OE.15.007610
- M. S. Luchansky and R. C. Bailey, "Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis," Anal. Chem. 82, 1975-1981 (2010). https://doi.org/10.1021/ac902725q
- P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007). https://doi.org/10.1038/nature06401
- T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, "Microresonator-based optical frequency combs," Science 332, 555-559 (2011). https://doi.org/10.1126/science.1193968
- X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, "Mode-locked dark pulse Kerr combs in normal-dispersion microresonators," Nat. Photonics 9, 594-600 (2015). https://doi.org/10.1038/nphoton.2015.137
- A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, "On-chip optical squeezing," Phys. Rev. Appl. 3, 044005 (2015). https://doi.org/10.1103/PhysRevApplied.3.044005
- C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351, 1176-1180 (2016). https://doi.org/10.1126/science.aad8532
- R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H.-S. Tsai, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, "Large-scale photonic integrated circuits," IEEE J. Sel. Top. Quantum Electron. 11, 50-65 (2005). https://doi.org/10.1109/JSTQE.2004.841721
- B. Jalali and S. Fathpour, "Silicon Photonics," J. Light. Technol. 24, 4600-4615 (2006). https://doi.org/10.1109/JLT.2006.885782
- J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express 19, 24090-24101 (2011). https://doi.org/10.1364/OE.19.024090
- M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, "Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform," Opt. Express 21, 17814-17823 (2013). https://doi.org/10.1364/OE.21.017814
- L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, "WDM-compatible mode-division multiplexing on a silicon chip," Nat. Commun. 5, 3069 (2014). https://doi.org/10.1038/ncomms4069
- T. W. Mark, M. S. Jeffrey, S. O. Jason, J. R. Rajeev, S. Vladimir, and A. P. Milos, "Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips," Proc. SPIE 8991, 89910B (2014).
- T. Barwicz and H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides," J. Light. Technol. 23, 2719 (2005). https://doi.org/10.1109/JLT.2005.850816
- M. K. Chin and S. T. Ho, "Design and modeling of wave-guide-coupled single-mode microring resonators," J. Light. Technol. 16, 1433 (1998). https://doi.org/10.1109/50.704609
- M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment," IEEE J. Quantum Electron. 46, 1158-1169 (2010). https://doi.org/10.1109/JQE.2010.2044633
- K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006). https://doi.org/10.1016/j.optcom.2005.07.057
- M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, "Coupling ideality of integrated planar high-Q microresonators," Phys. Rev. Appl. 7, 024026 (2017). https://doi.org/10.1103/PhysRevApplied.7.024026
- A. Prinzen, J. Bolten, M. Waldow, and H. Kurz, "Study on fabrication tolerances of SOI based directional couplers and ring resonators," Microelectron. Eng. 121, 51-54 (2014). https://doi.org/10.1016/j.mee.2014.03.019
- S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003). https://doi.org/10.1103/PhysRevLett.91.043902
- Y. Liu, T. J. Chang, and A. E. Craig, "Coupled mode theory for modeling microring resonators," Opt. Eng. 44, 084601 (2005). https://doi.org/10.1117/1.2012503
- W.-P. Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11, 963-983 (1994). https://doi.org/10.1364/JOSAA.11.000963
- H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, NJ, USA, 1984).
- K. Okamoto, Fundamentals of Optical Waveguides (Academinc press, MA, USA. 2006).
- A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, MA , USA. 2005).
- M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). https://doi.org/10.1364/OPEX.13.001515