DOI QR코드

DOI QR Code

Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator

  • Son, Seong-Jin (Department of Physic and Photon Science, Gwangju Institute Science and Technology) ;
  • Kim, Suyeon (Department of Physic and Photon Science, Gwangju Institute Science and Technology) ;
  • Yu, Nan Ei (Advanced Photonics Research Institute, Gwangju Institute Science and Technology) ;
  • Ko, Do-Kyeong (Department of Physic and Photon Science, Gwangju Institute Science and Technology)
  • Received : 2021.04.28
  • Accepted : 2021.06.28
  • Published : 2021.10.25

Abstract

The evanescent wave coupling of a microring resonator is controlled by changing the gap distance between the bus waveguide and the microring waveguide. However, the interdependence of the bus waveguide's width and the coupling is not well understood. In this paper, we investigate the dependence of coupling strength on the bus waveguide's width. The strength of the evanescent wave coupling is analytically calculated using coupled-mode theory (CMT) and numerically calculated by three-dimensional finite-difference-time-domain (FDTD) simulation. The analytic and numerical simulation results show that the phase-matching condition in evanescent wave coupling does not provide maximum coupling strength, because both phase-matching and mode confinement influence the coupling. The analytic and simulation results for the evanescent coupling correspond to the experimental results. The optimized bus-waveguide width that provides maximum coupling strength results in intrinsic quality factors of up to 1.3 × 106. This study provides reliable guidance for the design of microring resonators, depending on various applications.

Keywords

Acknowledgement

This research was supported by the "Ultra-short Quantum Beam Facility Program" and "GIST Research Institute Program" through grants provided by the Gwangju Institute of Science and Technology in 2021. This research is also supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (No. 2021R1A2C1007130), and the Energy AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea (NIPA), funded by the Ministry of Science and ICT (No. S1602-20-1009).

References

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, "Microring resonator channel dropping filters," J. Light. Technol. 15, 998-1005 (1997). https://doi.org/10.1109/50.588673
  2. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photonics Technol. Lett. 11, 691-693 (1999). https://doi.org/10.1109/68.766787
  3. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012). https://doi.org/10.1002/lpor.201100017
  4. C.-Y. Chung and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Light. Technol. 24, 1395-1402 (2006). https://doi.org/10.1109/JLT.2005.863333
  5. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007). https://doi.org/10.1364/OE.15.007610
  6. M. S. Luchansky and R. C. Bailey, "Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis," Anal. Chem. 82, 1975-1981 (2010). https://doi.org/10.1021/ac902725q
  7. P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007). https://doi.org/10.1038/nature06401
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, "Microresonator-based optical frequency combs," Science 332, 555-559 (2011). https://doi.org/10.1126/science.1193968
  9. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, "Mode-locked dark pulse Kerr combs in normal-dispersion microresonators," Nat. Photonics 9, 594-600 (2015). https://doi.org/10.1038/nphoton.2015.137
  10. A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, "On-chip optical squeezing," Phys. Rev. Appl. 3, 044005 (2015). https://doi.org/10.1103/PhysRevApplied.3.044005
  11. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351, 1176-1180 (2016). https://doi.org/10.1126/science.aad8532
  12. R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H.-S. Tsai, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, "Large-scale photonic integrated circuits," IEEE J. Sel. Top. Quantum Electron. 11, 50-65 (2005). https://doi.org/10.1109/JSTQE.2004.841721
  13. B. Jalali and S. Fathpour, "Silicon Photonics," J. Light. Technol. 24, 4600-4615 (2006). https://doi.org/10.1109/JLT.2006.885782
  14. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express 19, 24090-24101 (2011). https://doi.org/10.1364/OE.19.024090
  15. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, "Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform," Opt. Express 21, 17814-17823 (2013). https://doi.org/10.1364/OE.21.017814
  16. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, "WDM-compatible mode-division multiplexing on a silicon chip," Nat. Commun. 5, 3069 (2014). https://doi.org/10.1038/ncomms4069
  17. T. W. Mark, M. S. Jeffrey, S. O. Jason, J. R. Rajeev, S. Vladimir, and A. P. Milos, "Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips," Proc. SPIE 8991, 89910B (2014).
  18. T. Barwicz and H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides," J. Light. Technol. 23, 2719 (2005). https://doi.org/10.1109/JLT.2005.850816
  19. M. K. Chin and S. T. Ho, "Design and modeling of wave-guide-coupled single-mode microring resonators," J. Light. Technol. 16, 1433 (1998). https://doi.org/10.1109/50.704609
  20. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment," IEEE J. Quantum Electron. 46, 1158-1169 (2010). https://doi.org/10.1109/JQE.2010.2044633
  21. K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006). https://doi.org/10.1016/j.optcom.2005.07.057
  22. M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, "Coupling ideality of integrated planar high-Q microresonators," Phys. Rev. Appl. 7, 024026 (2017). https://doi.org/10.1103/PhysRevApplied.7.024026
  23. A. Prinzen, J. Bolten, M. Waldow, and H. Kurz, "Study on fabrication tolerances of SOI based directional couplers and ring resonators," Microelectron. Eng. 121, 51-54 (2014). https://doi.org/10.1016/j.mee.2014.03.019
  24. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003). https://doi.org/10.1103/PhysRevLett.91.043902
  25. Y. Liu, T. J. Chang, and A. E. Craig, "Coupled mode theory for modeling microring resonators," Opt. Eng. 44, 084601 (2005). https://doi.org/10.1117/1.2012503
  26. W.-P. Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11, 963-983 (1994). https://doi.org/10.1364/JOSAA.11.000963
  27. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, NJ, USA, 1984).
  28. K. Okamoto, Fundamentals of Optical Waveguides (Academinc press, MA, USA. 2006).
  29. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, MA , USA. 2005).
  30. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). https://doi.org/10.1364/OPEX.13.001515