DOI QR코드

DOI QR Code

40-W 200-ns 300-kHz Thulium-doped Fiber Laser at 2050 nm

  • Received : 2021.07.09
  • Accepted : 2021.09.02
  • Published : 2021.10.25

Abstract

A 40-W 200-ns 300-kHz thulium-doped fiber laser at 2050 nm with a master oscillator power amplifier configuration was developed, for application to lithium-isotope separation. The master oscillator generated a 5.35 W continuous-wave beam, which the pulse generator then broke into 200-ns pulses at 300 kHz. Then, the laser beam was amplified by passing through a two-stage amplifier. The output power finally obtained was 42.0 W at 2050 nm, and was stable for a long time, over 2 hours. In spite of this achievement, mode instability was observed in the output beam. This can be solved in the future by using a method such as tight coiling.

Keywords

Acknowledgement

This work was supported by the Korea Atomic Energy Research Institute (KAERI) granted by the Korean government [Project no.: 524430-21].

References

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, "2 ㎛ laser sources and their possible applications," in Frontiers in guided wave optics and optoelectronics, B. Pal, Ed. (IntechOpen, London, UK. 2010), pp. 471-500.
  2. V. Mamuschkin, A. Haeusler, C. Engelmann, A. Olowinsky, and H. Aehling, "Enabling pyrometry in absorber-free laser transmission welding through pulsed irradiation," J. Laser Appl. 29, 022409 (2017). https://doi.org/10.2351/1.4983515
  3. V. Mamuschkin, C. Engelmann, and A. Olowinsky, "Improvement of energy deposition in absorber-free laser welding through quasi-simultaneous irradiation," Phys. Procedia 83, 472-482 (2016). https://doi.org/10.1016/j.phpro.2016.08.049
  4. I. Mingareev F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, "Welding of polymers using a 2 ㎛ thulium fiber laser," Opt. Laser Technol. 44, 2095-2099 (2012). https://doi.org/10.1016/j.optlastec.2012.03.020
  5. J. De Pelsmaeker, G.-J. Graulus, S. Van Vlierberghe, H. Thienpont, D. Van Hemelrijck, P. Dubruel, and H. Ottevaere, "Clear to clear laser welding for joining thermoplastic polymers: a comparative study based on physicochemical characterization," J. Mater. Process. Technol. 255, 808-815 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.011
  6. S. Routsalainen, P. Laakso, and V. Kujanpaa, "Laser welding of transparent polymers by using quasi-simultaneous beam off-setting scanning technique," Phys. Procedia 78, 272-284 (2015). https://doi.org/10.1016/j.phpro.2015.11.038
  7. B. Acherjee, "Laser transmission welding of polymers-a review on process fundamentals, material attributes, weldability, and welding techniques," J. Manuf. Process 60, 227-246 (2020). https://doi.org/10.1016/j.jmapro.2020.10.017
  8. G. Overton, "Fiber lasers: 2 ㎛ thulium fiber laser offers precision surgery promise," (Laser Focus World, Published date: 12 August 2017) https://www.laserfocusworld.com/lasers-sources/article/16548098/fiber-lasers-2-m-thulium-fiber-laser-offers-precision-surgery-promise (Accessed date: 16 September 2021).
  9. F. Amzajerdiam M. J. Kavaya, U. Singh, and J. Yu, "2-micron coherent Doppler lidar for space-based global wind field mapping," in Proc. IEEE International Symposium on Geoscience and Remote Sensing-IGARSS (Toulouse, France, Jul. 2003), pp. 515-517.
  10. D. Engin, B. Mathason, and M. Storm, "Efficient, space-based, PM 100 W thulium fiber laser for pumping Q-switching 2 ㎛ Ho:YLF for global winds and carbon dioxide lidar," Proc. SPIE 10406, 104060B (2017).
  11. R. Zhou, S. McKeown, B. G. Griffin, B. Amnueypornsakul, H. Huang, S. Eckhoff, D. Wasserman, and L. L. Goddard, "CO2 sensing with a 2005 nm thulium holmium co-doped fiber laser," in Optical Sensors 2012 (Optical Society of America, 2012), paper STh2B.4.
  12. K. Bremer, A. Pal, S. Yao, E. Lewis, R. Sen, T. Sun, and K. T. V. Grattan, "Sensitive detection of CO2 implementing tunable thulium-doped all-fiber laser," Appl. Opt. 52, 3957-3963 (2013). https://doi.org/10.1364/AO.52.003957
  13. P. Lin, T. Wang, W. Ma, J. Chen, Z. Jiang, and C. Yu, "2-㎛ free space data transmission based on an actively mode-locked holmium-doped fiber laser," IEEE Photon. Technol. Lett. 32, 223-226 (2020). https://doi.org/10.1109/lpt.2020.2968073
  14. D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chickles, "Resonantly pumped Tm-doped fiber laser with >90% slope efficiency," Opt. Lett. 39, 470-473 (2014). https://doi.org/10.1364/OL.39.000470
  15. Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, "High power tandem-pumped thulium-doped fiber laser," Opt. Express 23, 2991-2998 (2015). https://doi.org/10.1364/OE.23.002991
  16. J. Kwiatkowski, L. Gorajek, J. K. Jabczynski, W. Zendzain, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, "Tunable Ho:YAG laser pumped by Tm:fiber laser," in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper JTuD4.
  17. W. Koen, C. Jacobs, O. Collett, and M. J. D. Esser, "Efficient Ho:YLF laser pumped by a Tm:fiber laser," in Mid-Infrared Coherent Sources 2013 (Optical Society of America, 2013), paper MW1C.6.
  18. P. Forster, C. Romano, C. Kieleck, and M. Eichhorn, "Advances in two-micron lasers for nonlinear conversion into the mid-IR," Proc. SPIE 11355, 1135509 (2020).
  19. S. D. Jackson, "Cross relaxation and energy transfer upconversion process relevant to the functioning of 2 ㎛ Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004). https://doi.org/10.1016/j.optcom.2003.11.045
  20. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, "1-kW, all-glass Tm:fiber laser," in SPIE Photonics West 2010:LASE, 2010 (San Francisco, USA, Jan. 2010).
  21. M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Segeev, and V. Gapontsev, "415 W single-mode CW thulium fiber laser in all-fiber format," in the European Conference on Lasers and Electro-Optics 2007 (Optical Society of America, 2007), paper CP2_3.
  22. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, "Tm-doped fiber lasers: fundamentals and power scaling," IEEE J. Sel. Top. Quantum Electron. 15, 85-92 (2009). https://doi.org/10.1109/JSTQE.2008.2010719
  23. G. D. Goodno, L. D. Book, and J. E. Rothenberg, "Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier," Opt. Lett. 34, 1204-1206 (2009). https://doi.org/10.1364/OL.34.001204
  24. T. Walbaum, M. Heinzig, A. Liem, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Optimization of diode-pumped thulium fiber laser with a monolithic cavity towards 278 W at 1967 nm," in Advanced Solid State Lasers Conference 2015 (Optical Society of America, 2015), paper ATh2A.28.
  25. T. Walbaum, M. Heinzig, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Monolithic thulium fiber laser with 567 W output power at 1970 nm," Opt. Lett. 41, 2632-2635 (2016). https://doi.org/10.1364/OL.41.002632
  26. L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Sincore, and M. Richardson, "High-power spectral beam combining of linearly polarized Tm:fiber lasers," Appl. Opt. 54, 757-762 (2015). https://doi.org/10.1364/AO.54.000757
  27. A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, "High average power thulium-doped silica fiber lasers: review of systems and concepts," IEEE J. Sel. Top. Quantum Electron. 24, 0901808 (2018).
  28. Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, "High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity," Opt. Express 20, 17539-17544 (2012). https://doi.org/10.1364/OE.20.017539
  29. D. Ouyang, J. Zhao, Z. Zheng, S. Ruan, C. Guo, P. Yan, and W. Xie, "110 W all fiber actively Q-switched thulium-doped fiber laser," IEEE Photonics J. 7, 1500407 (2015).
  30. C. Yang, Y. Ju, B. Yao, Z. Zhang, T. Dai, and X. Duan, "High-power Tm3+-doped all-fiber laser operating at 1908 nm by a master oscillator power amplifier configuration with narrow spectral width," Chin. Opt. Lett. 14, 061403 (2016). https://doi.org/10.3788/COL201614.061403
  31. J. Liu, K. Liu, F. Tan, and P. Wang, "High-power thuliumdoped all-fiber superfluorescent sources," IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).
  32. W. Yao, Z. Shao, C. Shen, Y. Zhao, H. Chen, and D. Shen, "400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth," in Laser Applications Conference 2017 (Optical Society of America, 2017), paper JTu2A.33.
  33. K. Yin, R. Zhu, B. Zhang, G. Liu, P. Zhou, and J. Hou, "300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser," Opt. Express 24, 11085-11090 (2016). https://doi.org/10.1364/OE.24.011085
  34. J. S. Shin, Y.-H. Cha, B. J. Chun, D.-Y. Jeong, and H. Park, "200-W continuous wave thulium-doped all-fiber laser at 2050 nm," Curr. Opt. Photon. 5, 306-310 (2021). https://doi.org/10.3807/COPP.2021.5.3.306
  35. W. Guan and J. R. Marciante, "Complete elimination of self-pulsations in dual-clad ytterbium-doped fiber lasers at all pumping levels," Opt. Lett. 34, 815-817 (2009). https://doi.org/10.1364/OL.34.000815
  36. A. F. El-Sherif and T. A. King, "Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers," Opt. Commun. 208, 381-389 (2002). https://doi.org/10.1016/S0030-4018(02)01587-0